Hypothesis on electrostatic attraction mechanisms involving the hairy adhesion of climbing animals has been a matter of controversy for several years. The detection of tribocharge and forces at attachment organs of an...Hypothesis on electrostatic attraction mechanisms involving the hairy adhesion of climbing animals has been a matter of controversy for several years. The detection of tribocharge and forces at attachment organs of animals is a practical method of clarifying the dispute with respect to electrostatic attraction in the attachment of animals. Nonetheless, the tribo-electrification is rarely examined in the contact-adhesion of animals(especially in their free and autonomous attachment) due to the lack of available devices. Therefore, the present study involves establishing a method and an apparatus that enables synchronous detection of tribocharge and contact forces to study tribo-electrification in the free locomotion of geckos. A type of a combined sensor unit that consists of a three-dimensional force transducer and a capacitor-based charge probe is used to measure contact forces and tribocharge with a magnitude corresponding to several nano-Coulombs at a footpad of geckos when they climb vertically upward on an acrylic oligomer substrate. The experimental results indicate that tribocharge at the footpads of geckos is related to contact forces and contact areas. The measured charge allows the expectation of an exact attraction with magnitude corresponding to dozens of newtons per square meter and provides a probability of examining tribo-electrification in animal attachment from a macro level.展开更多
Triboelectric separation, as an entirely dry technology, is a prospective method to process fine minerals.The aim of this paper is to investigate the performance of triboelectric separation of ilmenite and quartz mine...Triboelectric separation, as an entirely dry technology, is a prospective method to process fine minerals.The aim of this paper is to investigate the performance of triboelectric separation of ilmenite and quartz minerals in a lab unit and to get ready for the separation of ilmenite ore. A tribocharge measurement system was used to test the triboelectric properties of ilmenite and quartz particles with tribochargers respectively made of PVC, PPR, PMMA, Teflon, copper, stainless steel and quartz glass. The results show that the ilmenite particles charged positively while quartz charged negatively when tribocharged with PVC tribocharger. The mixture of 12% ilmenite and 88% quartz was prepared for the triboelectric separation. The recovery of ilmenite increases with the increase of airflow rate, decreases with the increasing feed rate, and grows up firstly and then decreases with the increasing voltage. A maximum ilmenite recovery of 51.71% with ilmenite content 32.72% was obtained at 40 m^3/h airflow rate, 6 g/s feed rate and 20 kV voltage. According to the optimal parameters of the separation of ilmenite and quartz mixture,fine ilmenite ore with 7.55% Ti content was beneficiated using the unit and the Ti content increased to 12.32% in concentrate product.展开更多
Particle sizes play a major role to mediate charge transfer, both between identical and different material surfaces. The study probes into the probable mechanism that actuates opposite polarities between two different...Particle sizes play a major role to mediate charge transfer, both between identical and different material surfaces. The study probes into the probable mechanism that actuates opposite polarities between two different size fractions of the same material by analyzing the charge transfer patterns of two different sizes of microcrystalline cellulose(MCC). Quantum scale calculations confirmed alteration of charge transfer capacities due to variation of moisture content predicted by multiple surface and bulk analytical techniques. Discrete Element Method(DEM) based multi-scale computational models pertinent to predict charge transfer capacities were further implemented, and the results were in accordance to the experimental charge profiles.展开更多
基金supported by grants from the National Natural Science Foundation of China(Grants No.51435008)funding from the Jiangsu Innovation Program for Graduate Education(Grants No.KYLX16_0328)
文摘Hypothesis on electrostatic attraction mechanisms involving the hairy adhesion of climbing animals has been a matter of controversy for several years. The detection of tribocharge and forces at attachment organs of animals is a practical method of clarifying the dispute with respect to electrostatic attraction in the attachment of animals. Nonetheless, the tribo-electrification is rarely examined in the contact-adhesion of animals(especially in their free and autonomous attachment) due to the lack of available devices. Therefore, the present study involves establishing a method and an apparatus that enables synchronous detection of tribocharge and contact forces to study tribo-electrification in the free locomotion of geckos. A type of a combined sensor unit that consists of a three-dimensional force transducer and a capacitor-based charge probe is used to measure contact forces and tribocharge with a magnitude corresponding to several nano-Coulombs at a footpad of geckos when they climb vertically upward on an acrylic oligomer substrate. The experimental results indicate that tribocharge at the footpads of geckos is related to contact forces and contact areas. The measured charge allows the expectation of an exact attraction with magnitude corresponding to dozens of newtons per square meter and provides a probability of examining tribo-electrification in animal attachment from a macro level.
基金provided by the National Natural Science Foundation of China (Nos. 51674257 and 51574234)the Fundamental Research Funds for the Central Universities (2014QNB10)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Triboelectric separation, as an entirely dry technology, is a prospective method to process fine minerals.The aim of this paper is to investigate the performance of triboelectric separation of ilmenite and quartz minerals in a lab unit and to get ready for the separation of ilmenite ore. A tribocharge measurement system was used to test the triboelectric properties of ilmenite and quartz particles with tribochargers respectively made of PVC, PPR, PMMA, Teflon, copper, stainless steel and quartz glass. The results show that the ilmenite particles charged positively while quartz charged negatively when tribocharged with PVC tribocharger. The mixture of 12% ilmenite and 88% quartz was prepared for the triboelectric separation. The recovery of ilmenite increases with the increase of airflow rate, decreases with the increasing feed rate, and grows up firstly and then decreases with the increasing voltage. A maximum ilmenite recovery of 51.71% with ilmenite content 32.72% was obtained at 40 m^3/h airflow rate, 6 g/s feed rate and 20 kV voltage. According to the optimal parameters of the separation of ilmenite and quartz mixture,fine ilmenite ore with 7.55% Ti content was beneficiated using the unit and the Ti content increased to 12.32% in concentrate product.
文摘Particle sizes play a major role to mediate charge transfer, both between identical and different material surfaces. The study probes into the probable mechanism that actuates opposite polarities between two different size fractions of the same material by analyzing the charge transfer patterns of two different sizes of microcrystalline cellulose(MCC). Quantum scale calculations confirmed alteration of charge transfer capacities due to variation of moisture content predicted by multiple surface and bulk analytical techniques. Discrete Element Method(DEM) based multi-scale computational models pertinent to predict charge transfer capacities were further implemented, and the results were in accordance to the experimental charge profiles.