<i><span style="font-family:Verdana;">Paeonia lactiflora</span></i><span style="font-family:""><span style="font-family:Verdana;"> Pall. var. <...<i><span style="font-family:Verdana;">Paeonia lactiflora</span></i><span style="font-family:""><span style="font-family:Verdana;"> Pall. var. </span><i><span style="font-family:Verdana;">trichocarpa </span></i><span style="font-family:Verdana;">is a variety of </span><i><span style="font-family:Verdana;">Paeonia lactiflora</span></i><span style="font-family:Verdana;"> Pall., and is currently the peony herb</span></span><span style="font-family:Verdana;">’</span><span style="font-family:""><span style="font-family:Verdana;">s principal cultivar group. Here, we study the differences in aromatic components and flowers of different varieties between two groups of cultivars, providing a reference for applying natural fragrance substances of peonies, breeding fragrant flower types, and developing and </span><span style="font-family:Verdana;">using improved varieties. Headspace solid-phase microextraction (HS-SPME),</span> <span style="font-family:Verdana;">gas chromatography-mass spectrometry (GC-MS), peak area normalization for</span><span style="font-family:Verdana;"> each component relative to content, component library (NIST14/NIST14S) retrieval, and a literature review were used to analyze the volatile compounds in flowers of eight peony varieties, such as </span></span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">Gaoganhong</span><span style="font-family:Verdana;">”</span><span style="font-family:Verdana;">, and ten comospore peony varieties, such as </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">Jinshanhong</span><span style="font-family:Verdana;">”</span><span style="font-family:""><span style="font-family:Verdana;">. Results showed that the main volatile compound constituents in flowers of the two groups were terpenes and alcohols. Additionally, the content of eucalyptol, caryophyllene, α-Pinene, citronellol, and 3-Hexen-1-ol, acetate, (Z) was high. Peony cultivars contained linalool,</span><span style="font-family:Verdana;"> (1R)-2,6,6-trimethylbicyclo[3.1.1]hept-2-ene, and 1,4-dimethoxybenzene,</span><span style="font-family:Verdana;"> while comospore peony varieties contained 1,3,6-octatriene, 3,7-dimethyl-, (Z)-, phenylethyl alcohol, and geraniol. In this study, the differences between the volatile components of flowers of different peony varieties were clarified, laying a foundation for further molecular biology research into the floral fragrance of peonies and the cultivation of new varieties of aromatic peonies. At the same time, it also provides a theoretical basis for the development and application of peony flower by-products.展开更多
KANADI(KAN)is a plant-specific gene that controlled the polarity development of lateral organs.It mainly acted on the abaxial characteristics of plants to make the lateral organs asymmetrical.However,it had been less ...KANADI(KAN)is a plant-specific gene that controlled the polarity development of lateral organs.It mainly acted on the abaxial characteristics of plants to make the lateral organs asymmetrical.However,it had been less identified in woody plants.In this study,the members of the KAN gene family in Populus trichocarpa were identified and analyzed using the bioinformatics method.The results showed that a total of 8 KAN family members were screened out,and each member contained the unique GARP domain and conserved region of the family proteins.Phylogenetic analysis and their gene structures revealed that all KAN genes from P.trichocarpa,Arabidopsis thaliana,and Nicotiana benthamiana could be divided into four subgroups,while the eight genes in P.trichocarpa were classified into three subgroups,respectively.The analysis of tissue-specific expression indicated that PtKAN1 was highly expressed in young leaves,PtKAN6 was highly expressed in young leaves and mature leaves,PtKAN2,PtKAN5,and PtKAN7 were highly expressed in nodes and internodes,PtKAN8 was highly expressed in roots,and PtKAN3 and PtKAN4 showed low expression levels in all tissues.Among them,PtKAN2 and PtKAN6,and PtKAN4 and PtKAN5 might have functional redundancy.Under high nitrogen concentrations,PtKAN2 and PtKAN8 were highly expressed in mature stems and leaves,respectively,while PtKAN4,PtKAN5,and PtKAN7 were highly expressed in roots.This study laid a theoretical foundation for further study of the KAN genemediated nitrogen effect on root development.展开更多
To explore the biological characteristics of Vascular plant One-Zinc finger(VOZ)gene family in Populus trichocarpa,this paper used bioinformatics to analyze the nucleotide sequences and protein sequences of four membe...To explore the biological characteristics of Vascular plant One-Zinc finger(VOZ)gene family in Populus trichocarpa,this paper used bioinformatics to analyze the nucleotide sequences and protein sequences of four members of VOZ gene family of P.trichocarpa.The results showed that the four PtVOZ genes of P.trichocarpa were evenly distributed on four chromosomes.The length and molecular weight of the encoded protein were almost the same,and the subcellular localization was located in the nucleus,belonging to the unstable acidic hydrophilic non-aliphatic soluble protein.The gene structures were all in the patterns of 4 exons and 3 introns.The proportion order of PtVOZ transcription factor secondary structure components was random coil>αhelix>extended strand>βsheets,and the tertiary structure was very similar in spatial conformation.The phylogenetic tree analysis showed that P.trichocarpa was more closely related to VOZ transcription factors of dicotyledons.The four PtVOZ genes of P.trichocarpa were expressed in seedlings and different tissues,but there were differences in the expression intensity.This study provided a necessary theoretical basis for further exploring the molecular biological function of PtVOZ genes.展开更多
A full set of disease resistance(R) candidate genes encoding nucleotide-binding sites(NBS) in a complete genome of Populus trichocarpa was identified and characterized by structural diversities,physical positions,phyl...A full set of disease resistance(R) candidate genes encoding nucleotide-binding sites(NBS) in a complete genome of Populus trichocarpa was identified and characterized by structural diversities,physical positions,phylogenetic relationships.Based on structures of N-terminal motif and leucine-rich repeat domains motif,we found 381 NBS-coding sequences with 122 non-regular NBS genes and 259 regular NBS genes that were further classified into 13 types such as TNL,CNL,NL,XNL,TN and other minor types.Meanwhile 81.9% of the NBS genes were distributed in cluster,and 81.8% of the cluster genes had duplicates.The results showed that there were many duplicate phenomenon occurred in the evolution of disease resistance genes of P.trichocarpa.After analysis of NBS standard phylogenetic tree in the genome of P.trichocarpa,the structure of tree exhibited a star topology,and the regular NBS genes were classified into 68 groups by less than 30% amino acid sequence diversity in each domain.展开更多
文摘<i><span style="font-family:Verdana;">Paeonia lactiflora</span></i><span style="font-family:""><span style="font-family:Verdana;"> Pall. var. </span><i><span style="font-family:Verdana;">trichocarpa </span></i><span style="font-family:Verdana;">is a variety of </span><i><span style="font-family:Verdana;">Paeonia lactiflora</span></i><span style="font-family:Verdana;"> Pall., and is currently the peony herb</span></span><span style="font-family:Verdana;">’</span><span style="font-family:""><span style="font-family:Verdana;">s principal cultivar group. Here, we study the differences in aromatic components and flowers of different varieties between two groups of cultivars, providing a reference for applying natural fragrance substances of peonies, breeding fragrant flower types, and developing and </span><span style="font-family:Verdana;">using improved varieties. Headspace solid-phase microextraction (HS-SPME),</span> <span style="font-family:Verdana;">gas chromatography-mass spectrometry (GC-MS), peak area normalization for</span><span style="font-family:Verdana;"> each component relative to content, component library (NIST14/NIST14S) retrieval, and a literature review were used to analyze the volatile compounds in flowers of eight peony varieties, such as </span></span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">Gaoganhong</span><span style="font-family:Verdana;">”</span><span style="font-family:Verdana;">, and ten comospore peony varieties, such as </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">Jinshanhong</span><span style="font-family:Verdana;">”</span><span style="font-family:""><span style="font-family:Verdana;">. Results showed that the main volatile compound constituents in flowers of the two groups were terpenes and alcohols. Additionally, the content of eucalyptol, caryophyllene, α-Pinene, citronellol, and 3-Hexen-1-ol, acetate, (Z) was high. Peony cultivars contained linalool,</span><span style="font-family:Verdana;"> (1R)-2,6,6-trimethylbicyclo[3.1.1]hept-2-ene, and 1,4-dimethoxybenzene,</span><span style="font-family:Verdana;"> while comospore peony varieties contained 1,3,6-octatriene, 3,7-dimethyl-, (Z)-, phenylethyl alcohol, and geraniol. In this study, the differences between the volatile components of flowers of different peony varieties were clarified, laying a foundation for further molecular biology research into the floral fragrance of peonies and the cultivation of new varieties of aromatic peonies. At the same time, it also provides a theoretical basis for the development and application of peony flower by-products.
基金funded by the Natural Science Foundation of Heilongjiang Province,China(ZD2020C004)the Fundamental Research Funds for the Central Universities(2572019CT02).
文摘KANADI(KAN)is a plant-specific gene that controlled the polarity development of lateral organs.It mainly acted on the abaxial characteristics of plants to make the lateral organs asymmetrical.However,it had been less identified in woody plants.In this study,the members of the KAN gene family in Populus trichocarpa were identified and analyzed using the bioinformatics method.The results showed that a total of 8 KAN family members were screened out,and each member contained the unique GARP domain and conserved region of the family proteins.Phylogenetic analysis and their gene structures revealed that all KAN genes from P.trichocarpa,Arabidopsis thaliana,and Nicotiana benthamiana could be divided into four subgroups,while the eight genes in P.trichocarpa were classified into three subgroups,respectively.The analysis of tissue-specific expression indicated that PtKAN1 was highly expressed in young leaves,PtKAN6 was highly expressed in young leaves and mature leaves,PtKAN2,PtKAN5,and PtKAN7 were highly expressed in nodes and internodes,PtKAN8 was highly expressed in roots,and PtKAN3 and PtKAN4 showed low expression levels in all tissues.Among them,PtKAN2 and PtKAN6,and PtKAN4 and PtKAN5 might have functional redundancy.Under high nitrogen concentrations,PtKAN2 and PtKAN8 were highly expressed in mature stems and leaves,respectively,while PtKAN4,PtKAN5,and PtKAN7 were highly expressed in roots.This study laid a theoretical foundation for further study of the KAN genemediated nitrogen effect on root development.
文摘To explore the biological characteristics of Vascular plant One-Zinc finger(VOZ)gene family in Populus trichocarpa,this paper used bioinformatics to analyze the nucleotide sequences and protein sequences of four members of VOZ gene family of P.trichocarpa.The results showed that the four PtVOZ genes of P.trichocarpa were evenly distributed on four chromosomes.The length and molecular weight of the encoded protein were almost the same,and the subcellular localization was located in the nucleus,belonging to the unstable acidic hydrophilic non-aliphatic soluble protein.The gene structures were all in the patterns of 4 exons and 3 introns.The proportion order of PtVOZ transcription factor secondary structure components was random coil>αhelix>extended strand>βsheets,and the tertiary structure was very similar in spatial conformation.The phylogenetic tree analysis showed that P.trichocarpa was more closely related to VOZ transcription factors of dicotyledons.The four PtVOZ genes of P.trichocarpa were expressed in seedlings and different tissues,but there were differences in the expression intensity.This study provided a necessary theoretical basis for further exploring the molecular biological function of PtVOZ genes.
文摘A full set of disease resistance(R) candidate genes encoding nucleotide-binding sites(NBS) in a complete genome of Populus trichocarpa was identified and characterized by structural diversities,physical positions,phylogenetic relationships.Based on structures of N-terminal motif and leucine-rich repeat domains motif,we found 381 NBS-coding sequences with 122 non-regular NBS genes and 259 regular NBS genes that were further classified into 13 types such as TNL,CNL,NL,XNL,TN and other minor types.Meanwhile 81.9% of the NBS genes were distributed in cluster,and 81.8% of the cluster genes had duplicates.The results showed that there were many duplicate phenomenon occurred in the evolution of disease resistance genes of P.trichocarpa.After analysis of NBS standard phylogenetic tree in the genome of P.trichocarpa,the structure of tree exhibited a star topology,and the regular NBS genes were classified into 68 groups by less than 30% amino acid sequence diversity in each domain.
基金the National Special Program of Transgenic Plants Research and Development (2009ZX08-009-129B)National Natural Science Foundation of China (30971857)
文摘本研究中,通过隐马尔科夫模型(HMM)和杨树蛋白质库搜索,共找到 17 个杨树铵转运体蛋白(PtAMTs)。利用生物信息学方法,我们对杨树家族 17 条 AMT 蛋白序列的系统发生和 AMT 基因组定位进行分析,然后对其氨基酸组成成分、理化性质以及二级结构进行预测和分析,同时还分析了杨树与拟南芥、水稻、番茄、百脉根和欧洲油菜的 AMT 基因家族之间的联系。二级结构预测结果发现不同成员间氨基酸数目、氨基酸序列间的疏水性存在一定的差异;α- 螺旋和无规则卷曲为主要二级结构组成部分。同源性比对分析表明,PtAMT 基因家族主要分为 2 个亚家族,AMT1 (11 个成员)和 AMT2 (6 个成员),基因结果分析表明 AMT2 亚家族成员不含内含子。杨树 AMT 蛋白的亚细胞定位分析表明 PtAMT 主要定位于膜结构上。电子表达图谱分析结果表明:只有 XP_002309151 和 XP_002334025 基因有对应的 EST 序列,并有相应的电子表达谱,并主要在花蕾表达。