In this paper,using inhomogeneous Calderon’s reproducing formulas and the space of test functions associated with a para-accretive function,the inhomogeneous Besov and TriebelLizorkin spaces are established.As applic...In this paper,using inhomogeneous Calderon’s reproducing formulas and the space of test functions associated with a para-accretive function,the inhomogeneous Besov and TriebelLizorkin spaces are established.As applications,pointwise multiplier theorems are also obtained.展开更多
In this paper, we prove the Triebel-Lizorkin boundedness for the Marcinkiewicz integral with rough kernel. The method we apply here enables us to consider more general operators.
The Besov spaces B_p^(α,4)(Γ)and Triebel-Lizorkin spaces F_p^(α,4)(Γ)with high order x∈R on a Lipschitz curve Γ are defind,when 1≤p≤∞,1≤q≤∞.To compare to the classical case.a difference characterization of...The Besov spaces B_p^(α,4)(Γ)and Triebel-Lizorkin spaces F_p^(α,4)(Γ)with high order x∈R on a Lipschitz curve Γ are defind,when 1≤p≤∞,1≤q≤∞.To compare to the classical case.a difference characterization of such spaces in the case|x|<1 is given also.展开更多
In this paper we use wavelets to characterize weighted Triebel-Lizorkin spaces. Our weights belong to the Muckenhoupt class A q and our weighted Triebel-Lizorkin spaces are weighted atomic Triebel-Lizorkin spaces.
In this article,we study the boundedness properties of the averaging operator S_(t)^(γ) on Triebel-Lizorkin spaces F_(p,q)^(α)(R^(n))for various p,q.As an application,we obtain the norm convergence rate for S_(t)^(...In this article,we study the boundedness properties of the averaging operator S_(t)^(γ) on Triebel-Lizorkin spaces F_(p,q)^(α)(R^(n))for various p,q.As an application,we obtain the norm convergence rate for S_(t)^(γ)(f)on Triebel-Lizorkin spaces and the relation between the smoothness imposed on functions and the rate of norm convergence of S_(t)^(γ) is given.展开更多
Let h, be a measurable function defined on R^+ ×R^+. Let Ω ∈ L(log L^+)^υq (S^n1-1 × S^n2-1) (1≤ υq ≤ 2) be homogeneous of degree zero and satisfy certain cancellation conditions. We show that...Let h, be a measurable function defined on R^+ ×R^+. Let Ω ∈ L(log L^+)^υq (S^n1-1 × S^n2-1) (1≤ υq ≤ 2) be homogeneous of degree zero and satisfy certain cancellation conditions. We show that the singular integral Tf(x1,x2)=p.v.∫∫R^n1+n2 Ω(y′1,y′2)h(|y1|,|y2|)/|y1|^n1|y2|^n2 f(x1-y1,x2-y2)dy1dy2maps from Sp,q^α1,α2F(R^n1×R^n2)boundedly to itself for 1 〈 p, q 〈 ∞, α1, α2 ∈R.展开更多
In this paper, the authors first establish the connections between the Herz-type Triebel-Lizorkin spaces and the well-known Herz-type spaces; the authors then study the pointwise multipliers for the Herz-type Triebel-...In this paper, the authors first establish the connections between the Herz-type Triebel-Lizorkin spaces and the well-known Herz-type spaces; the authors then study the pointwise multipliers for the Herz-type Triebel-Lizorkin spaces and show that pseudo-differential operators are bounded on these spaces by using pointwise multipliers.展开更多
In this paper, the author establishes a discrete characterization of the Herz-type Triebel-Lizorkin spaces which is used to prove the boundedness of pseudo-differential operators on these function spaces.
Let b^→=(b1,…,bm),bi∈∧°βi(R^n),1≤i≤m,0〈βi〈β,0〈β〈1,[B^→,T]f(x)=∫R^n(b1(x)-b1(y))…(bm(x)-bm(y))K(x-y)f(y)dy,where K is a Calder6n-Zygmund kernel. In this paper, we show that ...Let b^→=(b1,…,bm),bi∈∧°βi(R^n),1≤i≤m,0〈βi〈β,0〈β〈1,[B^→,T]f(x)=∫R^n(b1(x)-b1(y))…(bm(x)-bm(y))K(x-y)f(y)dy,where K is a Calder6n-Zygmund kernel. In this paper, we show that [b^→,T] is bounded from L^p(R^n) to Fp^β,∞(R^n),as well as [b^→,1α]form L^p (R^n) to Fp^β,∞(R^n),where 1/q=1/p-α/n.展开更多
In this paper, we reintroduce the weighted multi-parameter Triebel-Lizorkin spaces Fp^a,q(w;R^n1×R^n2) based on the Frazier and Jawerth' method in [11]. This space was firstly introduced in [18]. Then we estab...In this paper, we reintroduce the weighted multi-parameter Triebel-Lizorkin spaces Fp^a,q(w;R^n1×R^n2) based on the Frazier and Jawerth' method in [11]. This space was firstly introduced in [18]. Then we establish its dual space and get that (Fp'q)* = CMOp^-a,q' for 0 ~p≤ 1.展开更多
In this paper, we obtain the boundedness of the parabolic singular integral operator T with kernel in L(log L) 1/γ,(Sn- 1 ) on Triebel-Lizorkin spaces. Moreover, we prove the boundedness of a class of Marcinkiewi...In this paper, we obtain the boundedness of the parabolic singular integral operator T with kernel in L(log L) 1/γ,(Sn- 1 ) on Triebel-Lizorkin spaces. Moreover, we prove the boundedness of a class of Marcinkiewicz integrals μΩ,q (f) from ||f||Fp^oq(Rn) into Lp (Rn).展开更多
The boundedness on Triebel-Lizorkin spaces of oscillatory singular integral operator T in the form e^i|x|^aΩ(x)|x|^-n is studied,where a∈R,a≠0,1 and Ω∈L^1(S^n-1) is homogeneous of degree zero and satisfie...The boundedness on Triebel-Lizorkin spaces of oscillatory singular integral operator T in the form e^i|x|^aΩ(x)|x|^-n is studied,where a∈R,a≠0,1 and Ω∈L^1(S^n-1) is homogeneous of degree zero and satisfies certain cancellation condition. When kernel Ω(x' )∈Llog+L(S^n-1 ), the Fp^a,q(R^n) boundedness of the above operator is obtained. Meanwhile ,when Ω(x) satisfies L^1- Dini condition,the above operator T is bounded on F1^0,1 (R^n).展开更多
In this paper, we will prove the Triebel-Lizorkin boundedness for some oscillatory singular integrals with the kernel (x) satisfying a condition introduced by Grafakos and Stefanov. Our theorems will be proved under...In this paper, we will prove the Triebel-Lizorkin boundedness for some oscillatory singular integrals with the kernel (x) satisfying a condition introduced by Grafakos and Stefanov. Our theorems will be proved under various conditions on the phase function, radial and nonradial. Since the L p boundedness of these operators is not complete yet, the theorems extend many known results.展开更多
Based on the role of the polynomial functions on the homogeneous Besov spaces, on the homogeneous Triebel-Lizorkin spaces and on their realized versions, we study and obtain characterizations of these spaces via diffe...Based on the role of the polynomial functions on the homogeneous Besov spaces, on the homogeneous Triebel-Lizorkin spaces and on their realized versions, we study and obtain characterizations of these spaces via difference operators in a certain sense.展开更多
By using the Littlewood-Paley decomposition and the interpolation theory, we prove the boundedness of fractional integral on the product Triebel-Lizorkin spaces with a rough kernel related to the product block spaces.
In this sublinear operators paper, the boundedness of multilinear commutators related to with Lipschitz function on Triebel-Lizorkin spaces is given. As an application, we prove that the multilinear commutators of Lit...In this sublinear operators paper, the boundedness of multilinear commutators related to with Lipschitz function on Triebel-Lizorkin spaces is given. As an application, we prove that the multilinear commutators of Littlewood-Paley operator and Bochner-Riesz operator are bounded on Triebel-Lizorkin spaces.展开更多
In this paper the classical Besov spaces B^sp.q and Triebel-Lizorkin spaces F^sp.q for s∈R are generalized in an isotropy way with the smoothness weights { |2j|^α→ln }7=0. These generalized Besov spaces and Trie...In this paper the classical Besov spaces B^sp.q and Triebel-Lizorkin spaces F^sp.q for s∈R are generalized in an isotropy way with the smoothness weights { |2j|^α→ln }7=0. These generalized Besov spaces and Triebel-Lizorkin spaces, denoted by B^α→p.q and F^α→p.q for α^→ E Nk and k ∈N, respectively, keep many interesting properties, such as embedding theorems (with scales property for all smoothness weights), lifting properties for all parameters 5, and duality for index 0 〈 p 〈∞ By constructing an example, it is shown that there are infinitely many generalized Besov spaces and generalized Triebel-Lizorkin spaces lying between B^sp.q and ∪t〉s B^tp.q, and between F^sp.q and ∪t〉s F^tp.q, respectively.展开更多
In this paper,the author introduces new Triebel-Lizorkin spaces and Besov spaces associated with different homogeneities and proves that the composition of two Calderón-Zygmund singular integral operators with di...In this paper,the author introduces new Triebel-Lizorkin spaces and Besov spaces associated with different homogeneities and proves that the composition of two Calderón-Zygmund singular integral operators with different homogeneities is bounded on these new Triebel-Lizorkin spaces and Besov spaces.展开更多
In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO a...In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO and we obtain some characterizations for Hf on H^(2)(Ω) of other pseudoconvex domains.In these arguments,Amar's L^(p)-estimations and Berndtsson's L^(2)-estimations for solutions of the ■_(b)-equation play a crucial role.In addition,we solve Gleason's problem for Hardy spaces H^(p)(Ω)(1 ≤p≤∞) of bounded strongly pseudoconvex domains.展开更多
For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f...For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.展开更多
基金supported by the National Natural Science Foundation of China(11901495)Hunan Provincial NSF Project(2019JJ50573)the Scientific Research Fund of Hunan Provincial Education Department(22B0155)。
文摘In this paper,using inhomogeneous Calderon’s reproducing formulas and the space of test functions associated with a para-accretive function,the inhomogeneous Besov and TriebelLizorkin spaces are established.As applications,pointwise multiplier theorems are also obtained.
基金Supported by the National Science Foundation of China (Grants 10901043, 10701064, 10871173, and 10931001)Hangdian Foundation (KYS075608076)
文摘In this paper, we prove the Triebel-Lizorkin boundedness for the Marcinkiewicz integral with rough kernel. The method we apply here enables us to consider more general operators.
基金The author is supported in part by the Foundation of Zhongshan University Advanced Research Centre and NSF of China.
文摘The Besov spaces B_p^(α,4)(Γ)and Triebel-Lizorkin spaces F_p^(α,4)(Γ)with high order x∈R on a Lipschitz curve Γ are defind,when 1≤p≤∞,1≤q≤∞.To compare to the classical case.a difference characterization of such spaces in the case|x|<1 is given also.
基金The projectsupported by NSF of China and the Foundation of Advanced Research Center of Zhongshan Universi-ty
文摘In this paper we use wavelets to characterize weighted Triebel-Lizorkin spaces. Our weights belong to the Muckenhoupt class A q and our weighted Triebel-Lizorkin spaces are weighted atomic Triebel-Lizorkin spaces.
基金Supported by the National Natural Science Foundation of China(12071437,12101562)the Natural Science Foundation of Zhejiang(LQ20A010003)the Natural Science Foundation from the Education Department of Anhui Province(KJ2017A847).
文摘In this article,we study the boundedness properties of the averaging operator S_(t)^(γ) on Triebel-Lizorkin spaces F_(p,q)^(α)(R^(n))for various p,q.As an application,we obtain the norm convergence rate for S_(t)^(γ)(f)on Triebel-Lizorkin spaces and the relation between the smoothness imposed on functions and the rate of norm convergence of S_(t)^(γ) is given.
文摘Let h, be a measurable function defined on R^+ ×R^+. Let Ω ∈ L(log L^+)^υq (S^n1-1 × S^n2-1) (1≤ υq ≤ 2) be homogeneous of degree zero and satisfy certain cancellation conditions. We show that the singular integral Tf(x1,x2)=p.v.∫∫R^n1+n2 Ω(y′1,y′2)h(|y1|,|y2|)/|y1|^n1|y2|^n2 f(x1-y1,x2-y2)dy1dy2maps from Sp,q^α1,α2F(R^n1×R^n2)boundedly to itself for 1 〈 p, q 〈 ∞, α1, α2 ∈R.
基金Xu Jingshi was partially supported by NSF of Hunan in ChinaYang DaChun was partially supported by NNSF(10271015)and SEDF of China
文摘In this paper, the authors first establish the connections between the Herz-type Triebel-Lizorkin spaces and the well-known Herz-type spaces; the authors then study the pointwise multipliers for the Herz-type Triebel-Lizorkin spaces and show that pseudo-differential operators are bounded on these spaces by using pointwise multipliers.
文摘In this paper, the author establishes a discrete characterization of the Herz-type Triebel-Lizorkin spaces which is used to prove the boundedness of pseudo-differential operators on these function spaces.
基金Supported by NSF of China (Grant: 10571015)NSF of China (Grant: 10371004)RFDP of China (Grant: 20050027025).
文摘Let b^→=(b1,…,bm),bi∈∧°βi(R^n),1≤i≤m,0〈βi〈β,0〈β〈1,[B^→,T]f(x)=∫R^n(b1(x)-b1(y))…(bm(x)-bm(y))K(x-y)f(y)dy,where K is a Calder6n-Zygmund kernel. In this paper, we show that [b^→,T] is bounded from L^p(R^n) to Fp^β,∞(R^n),as well as [b^→,1α]form L^p (R^n) to Fp^β,∞(R^n),where 1/q=1/p-α/n.
基金Supported by NNSF of China grants(11501308,11271209,11371370)Jiangsu Government Scholarship for Overseas Studies
文摘In this paper, we reintroduce the weighted multi-parameter Triebel-Lizorkin spaces Fp^a,q(w;R^n1×R^n2) based on the Frazier and Jawerth' method in [11]. This space was firstly introduced in [18]. Then we establish its dual space and get that (Fp'q)* = CMOp^-a,q' for 0 ~p≤ 1.
基金Supported in part by National Natural Foundation of China (Grant No. 11071250)
文摘In this paper, we obtain the boundedness of the parabolic singular integral operator T with kernel in L(log L) 1/γ,(Sn- 1 ) on Triebel-Lizorkin spaces. Moreover, we prove the boundedness of a class of Marcinkiewicz integrals μΩ,q (f) from ||f||Fp^oq(Rn) into Lp (Rn).
文摘The boundedness on Triebel-Lizorkin spaces of oscillatory singular integral operator T in the form e^i|x|^aΩ(x)|x|^-n is studied,where a∈R,a≠0,1 and Ω∈L^1(S^n-1) is homogeneous of degree zero and satisfies certain cancellation condition. When kernel Ω(x' )∈Llog+L(S^n-1 ), the Fp^a,q(R^n) boundedness of the above operator is obtained. Meanwhile ,when Ω(x) satisfies L^1- Dini condition,the above operator T is bounded on F1^0,1 (R^n).
基金Supported by the National Natural Science Foundation of China (11026104, 11201103, 11226108)
文摘In this paper, we will prove the Triebel-Lizorkin boundedness for some oscillatory singular integrals with the kernel (x) satisfying a condition introduced by Grafakos and Stefanov. Our theorems will be proved under various conditions on the phase function, radial and nonradial. Since the L p boundedness of these operators is not complete yet, the theorems extend many known results.
文摘Based on the role of the polynomial functions on the homogeneous Besov spaces, on the homogeneous Triebel-Lizorkin spaces and on their realized versions, we study and obtain characterizations of these spaces via difference operators in a certain sense.
基金The NSF(11561057,11226104)of Chinathe NSF(20151BAB211002,20151BAB201007)of Jiangxi Province+1 种基金the Science Foundation(GJJ151054,GJJ151061)of Jiangxi Education Departmentthe Scientific Research Project of Shangrao Normal University
文摘By using the Littlewood-Paley decomposition and the interpolation theory, we prove the boundedness of fractional integral on the product Triebel-Lizorkin spaces with a rough kernel related to the product block spaces.
基金The Excellent Young Talent Foundation(2013SQRL080ZD)of Anhui Province
文摘In this sublinear operators paper, the boundedness of multilinear commutators related to with Lipschitz function on Triebel-Lizorkin spaces is given. As an application, we prove that the multilinear commutators of Littlewood-Paley operator and Bochner-Riesz operator are bounded on Triebel-Lizorkin spaces.
基金Supported by NSFC of China under Grant #10571084NSC in Taipei under Grant NSC 94-2115-M-008-009(for the second author)
文摘In this paper the classical Besov spaces B^sp.q and Triebel-Lizorkin spaces F^sp.q for s∈R are generalized in an isotropy way with the smoothness weights { |2j|^α→ln }7=0. These generalized Besov spaces and Triebel-Lizorkin spaces, denoted by B^α→p.q and F^α→p.q for α^→ E Nk and k ∈N, respectively, keep many interesting properties, such as embedding theorems (with scales property for all smoothness weights), lifting properties for all parameters 5, and duality for index 0 〈 p 〈∞ By constructing an example, it is shown that there are infinitely many generalized Besov spaces and generalized Triebel-Lizorkin spaces lying between B^sp.q and ∪t〉s B^tp.q, and between F^sp.q and ∪t〉s F^tp.q, respectively.
文摘In this paper,the author introduces new Triebel-Lizorkin spaces and Besov spaces associated with different homogeneities and proves that the composition of two Calderón-Zygmund singular integral operators with different homogeneities is bounded on these new Triebel-Lizorkin spaces and Besov spaces.
基金supported by the National Natural Science Foundation of China(12271101)。
文摘In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO and we obtain some characterizations for Hf on H^(2)(Ω) of other pseudoconvex domains.In these arguments,Amar's L^(p)-estimations and Berndtsson's L^(2)-estimations for solutions of the ■_(b)-equation play a crucial role.In addition,we solve Gleason's problem for Hardy spaces H^(p)(Ω)(1 ≤p≤∞) of bounded strongly pseudoconvex domains.
文摘For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.