In order to study the relationship between the triggering current, deuterium pressure and the excess heat, a series of experiments were made in a D/Pd gas-loading system. By comparing the system constants (k = AT//kP...In order to study the relationship between the triggering current, deuterium pressure and the excess heat, a series of experiments were made in a D/Pd gas-loading system. By comparing the system constants (k = AT//kP) in both nitrogen and deuterium atmosphere we found an optimum current (8 A) and a deuterium pressure (9 x 104 Pa) in which the system could release a maximum excess power (more than 80 W). The reproducibility was 16/16 and the excess energy released in the longest experiment was about 300 MJ within 40 days, which was corresponding to 104 eV for each palladium atom. Analysis of the palladium surface with a SEM (scanning electron microscopy) and an EDS (energy dispersive spectrometer) revealed that some new surface topographical feature with concentrations of unexpected elements (such as Ag, Sn, Pb and Ca) appeared after the current triggering. The results implied that the excess heat might come from a nuclear transmutation.展开更多
The mechanism of idiopathic ventricular tachycardia originating from the right ventricular outflow tract (RVOT) is not clear. Many clinical reports have suggested a mechanism of triggered activity. However, there ar...The mechanism of idiopathic ventricular tachycardia originating from the right ventricular outflow tract (RVOT) is not clear. Many clinical reports have suggested a mechanism of triggered activity. However, there are few studies investigating this be- cause of the technical difficulties associated with examining this theory. The L-type calcium current (/Ca-L), an important in- ward current of the action potential (AP), plays an important role in arrhythmogenesis. The aim of this study was to explore differences in the APs of right ventricular (RV) and RVOT cardiomyocytes, and differences in electrophysiological character- istics of the ICa-L in these myocytes. Rabbit RVOT and RV myocytes were isolated and their AP and Ic,-L were investigated us- ing the patch-clamp technique. RVOT cardiomyocytes had a wider range of AP duration (APD) than RV cardiomyocytes, with some markedly prolonged APDs and markedly shortened APDs. The markedly shortened APDs in RVOT myocytes were abolished by treatment with 4-AP, an inhibitor of the transient outward potassium current, but the markedly prolonged APDs remained, with some myocytes with a long AP plateau not repolarizing to resting potential. In addition, early afterdepolariza- tion (EAD) and second plateau responses were seen in RVOT myocytes but not in RV myocytes. RVOT myocytes had a high- er current density for/Ca-L than RV myocytes (RVOT (13.16±0.87) pA pF-1, RV (8.59±1.97) pA pF-1; P〈0.05). The ICa-L and the prolonged APD were reduced, and the EAD and second plateau response disappeared, after treatment with nifedipine (10 μmol L^-1), which blocks the Ica-L. In conclusion, there was a wider range of APDs in RVOT myocytes than in RV myocytes, which is one of the basic factors involved in arrhythmogenesis. The higher current density for ICa-L is one of the factors causing prolongation of the APD in RVOT myocytes. The combination of EAD with prolonged APD may be one of the mechanisms of RVOT-VT generation.展开更多
文摘In order to study the relationship between the triggering current, deuterium pressure and the excess heat, a series of experiments were made in a D/Pd gas-loading system. By comparing the system constants (k = AT//kP) in both nitrogen and deuterium atmosphere we found an optimum current (8 A) and a deuterium pressure (9 x 104 Pa) in which the system could release a maximum excess power (more than 80 W). The reproducibility was 16/16 and the excess energy released in the longest experiment was about 300 MJ within 40 days, which was corresponding to 104 eV for each palladium atom. Analysis of the palladium surface with a SEM (scanning electron microscopy) and an EDS (energy dispersive spectrometer) revealed that some new surface topographical feature with concentrations of unexpected elements (such as Ag, Sn, Pb and Ca) appeared after the current triggering. The results implied that the excess heat might come from a nuclear transmutation.
文摘The mechanism of idiopathic ventricular tachycardia originating from the right ventricular outflow tract (RVOT) is not clear. Many clinical reports have suggested a mechanism of triggered activity. However, there are few studies investigating this be- cause of the technical difficulties associated with examining this theory. The L-type calcium current (/Ca-L), an important in- ward current of the action potential (AP), plays an important role in arrhythmogenesis. The aim of this study was to explore differences in the APs of right ventricular (RV) and RVOT cardiomyocytes, and differences in electrophysiological character- istics of the ICa-L in these myocytes. Rabbit RVOT and RV myocytes were isolated and their AP and Ic,-L were investigated us- ing the patch-clamp technique. RVOT cardiomyocytes had a wider range of AP duration (APD) than RV cardiomyocytes, with some markedly prolonged APDs and markedly shortened APDs. The markedly shortened APDs in RVOT myocytes were abolished by treatment with 4-AP, an inhibitor of the transient outward potassium current, but the markedly prolonged APDs remained, with some myocytes with a long AP plateau not repolarizing to resting potential. In addition, early afterdepolariza- tion (EAD) and second plateau responses were seen in RVOT myocytes but not in RV myocytes. RVOT myocytes had a high- er current density for/Ca-L than RV myocytes (RVOT (13.16±0.87) pA pF-1, RV (8.59±1.97) pA pF-1; P〈0.05). The ICa-L and the prolonged APD were reduced, and the EAD and second plateau response disappeared, after treatment with nifedipine (10 μmol L^-1), which blocks the Ica-L. In conclusion, there was a wider range of APDs in RVOT myocytes than in RV myocytes, which is one of the basic factors involved in arrhythmogenesis. The higher current density for ICa-L is one of the factors causing prolongation of the APD in RVOT myocytes. The combination of EAD with prolonged APD may be one of the mechanisms of RVOT-VT generation.