BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients a...BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients and their altered expression in the serum,proteomics techniques were deployed to detect the differentially expressed proteins(DEPs)of in the serum of GDM patients to further explore its pathogenesis,and find out possible biomarkers to forecast GDM occurrence.METHODS Subjects were divided into GDM and normal control groups according to the IADPSG diagnostic criteria.Serum samples were randomly selected from four cases in each group at 24-28 wk of gestation,and the blood samples were identified by applying iTRAQ technology combined with liquid chromatography-tandem mass spectrometry.Key proteins and signaling pathways associated with GDM were identified by bioinformatics analysis,and the expression of key proteins in serum from 12 wk to 16 wk of gestation was further verified using enzyme-linked immunosorbent assay (ELISA).RESULTS Forty-seven proteins were significantly differentially expressed by analyzing the serum samples between the GDMgravidas as well as the healthy ones. Among them, 31 proteins were found to be upregulated notably and the rest16 proteins were downregulated remarkably. Bioinformatic data report revealed abnormal expression of proteinsassociated with lipid metabolism, coagulation cascade activation, complement system and inflammatory responsein the GDM group. ELISA results showed that the contents of RBP4, as well as ANGPTL8, increased in the serumof GDM gravidas compared with the healthy ones, and this change was found to initiate from 12 wk to 16 wk ofgestation.CONCLUSION GDM symptoms may involve abnormalities in lipid metabolism, coagulation cascade activation, complementsystem and inflammatory response. RBP4 and ANGPTL8 are expected to be early predictors of GDM.展开更多
d-Allulose, a rare sugar, exerts anti-obesity effects by inhibiting hepatic lipogenesis and promoting energy expenditure. Medium-chain triglycerides (MCTs) consist of three medium-chain fatty acids connected by glycer...d-Allulose, a rare sugar, exerts anti-obesity effects by inhibiting hepatic lipogenesis and promoting energy expenditure. Medium-chain triglycerides (MCTs) consist of three medium-chain fatty acids connected by glycerol. MCTs have been extensively investigated for their ability to reduce body fat accumulation. We previously investigated the anti-obesity effects of a combination of dietary d-allulose and MCT (5% - 13%) in rats;however, we could not confirm the anti-obesity effects of MCT or observed synergetic effects between d-allulose and MCT on body fat loss. We speculated that our previous studies were influenced by the excessive amount of MCT in the diets. Therefore, in this study, we aimed to investigate the anti-obesity effects of the simultaneous intake of d-allulose and MCT in rats fed an obesity-inducing high-fat diet with a low amount of MCTs (2%). Thirty-two male Wistar rats (3-week-old) were randomly divided into four groups: control, d-allulose, MCT, and d-allulose + MCT groups. Rats in each group were fed ad libitum on a control (no d-Allulose or MCT), 5% d-allulose, 2% MCT, or 5% d-allulose + 2% MCT diets for 16 weeks. Abdominal adipose tissue weights were significantly lower in the d-allulose diet group than in the control group, whereas no differences were observed between results of the MCT-supplemented groups. The total body fat mass was significantly lower in the d-allulose and MCT diet groups than in the control group, but no differences were observed between the MCT-supplemented groups. These results suggested that anti-obesity effects of dietary d-allulose were observed, and the effects of dietary MCTs were weaker than those of d-allulose. Moreover, we confirmed the interaction between dietary d-allulose and MCT on indicators of obesity. Interestingly, their effects were not synergistic, as MCT supplementation offset the anti-obesity effects of dietary d-allulose. However, the specific mechanisms underlying those effects remain unknown, warranting further investigation.展开更多
Background: In response to the escalating burden of cardiovascular diseases (CVDs) worldwide, exacerbated by lifestyle changes and socioeconomic shifts, acute coronary syndromes (ACS) stand out as a leading cause of m...Background: In response to the escalating burden of cardiovascular diseases (CVDs) worldwide, exacerbated by lifestyle changes and socioeconomic shifts, acute coronary syndromes (ACS) stand out as a leading cause of morbidity and mortality. The pivotal role of insulin resistance in the pathogenesis of atherosclerosis, independent of traditional risk factors, has garnered significant interest. Objective: This review aims to synthesize the recent advancements in the utilization of the triglyceride glucose index (TyG index) as a biomarker for assessing the severity and predicting the prognosis of ACS lesions. Methods: A systematic search was conducted across PubMed, Embase, and Scopus databases, incorporating keywords such as “triglyceride glucose index”, “TyG index”, “acute coronary syndrome”, “cardiovascular disease”, “insulin resistance”, “coronary artery calcification”, “SYNTAX score”, “Gensini score”, and “major adverse cardiac events”. Studies were included from the inception of each database up to July 2024. Selection criteria encompassed observational studies, case-control studies, and randomized controlled trials, with a particular emphasis on evaluating the diagnostic and prognostic value of the TyG index in patients with acute coronary syndromes. Ultimately, 46 publications met the inclusion criteria. Data extraction and quality assessment were performed in accordance with established guidelines. Results: Evidence suggests that the TyG index, reflecting insulin resistance, blood glucose, and lipid levels, is significantly associated with lesion severity in ACS, including coronary artery calcification, SYNTAX score, and Gensini score. Moreover, it demonstrates predictive power for major adverse cardiovascular events, underscoring its potential as a valuable tool in clinical decision-making. Conclusion: The review highlights the emerging role of the TyG index in the assessment and prognosis of ACS, advocating for its incorporation into clinical practice as a complement to existing diagnostic modalities. However, the establishment of standardized reference ranges and further validation across diverse populations are warranted to refine its applicability in personalized medicine. The interdisciplinary approach is essential to advance our understanding of the complex interplay between insulin resistance and cardiovascular disease, paving the way for the development of more effective prevention and treatment strategies.展开更多
In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniq...In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques.展开更多
Hypertriglyceridemia is the third leading cause of acute pancreatitis(AP),and its incidence is increasing.Due to its relatively insidious etiology,it is easy to be ignored in the early stages.In China,Chaiqin Chengqi ...Hypertriglyceridemia is the third leading cause of acute pancreatitis(AP),and its incidence is increasing.Due to its relatively insidious etiology,it is easy to be ignored in the early stages.In China,Chaiqin Chengqi Decoction(CQCQD)has long been employed for treating AP.AIM To evaluate the effectiveness of CQCQD in patients diagnosed with mild/moderately severe hypertriglyceridemic AP(HTG-AP).METHODS In this study,the clinical data of 39 patients with HTG-AP admitted from January 2019 to November 2022 were collected.The changes of blood lipids,gastrointestinal symptoms,and abdominal pain before and after treatment were analyzed and compared between the two groups.RESULTS Twenty patients were treated with the conventional HTG-AP regimen,and 19 patients were additionally treated with CQCQD.After receiving treatment,the triglycerides(TG)level of the CQCQD group was lower than that of the CQCQD group(3.14±0.25 mmol/L vs 4.96±0.47 mmol/L,P<0.01).After 3 d of treatment,the patients in the CQCQD group had more bowel movements than the control group(2.51±0.25 times vs 1.00±0.17 times,P=0.01).The gastrointestinal function of most patients returned to normal,and the acute gastrointestinal injury score was significantly lower than that of the control group(0.11±0.07 vs 0.42±0.11,P<0.01).CONCLUSION In patients with HTG-AP,CQCQD can significantly reduce the TG level,shorten the recovery time of defecation,significantly improve the gastrointestinal function.展开更多
Changes in lipid metabolism have been implicated in protection against infectious diseases. In the first experiment of this study, we measured clinical lipid parameters in a murine model where the unmethylated cytidin...Changes in lipid metabolism have been implicated in protection against infectious diseases. In the first experiment of this study, we measured clinical lipid parameters in a murine model where the unmethylated cytidine phosphate guanosine (CpG) oligodinucleotide (ODN1826), a Toll-like receptor 9 (TLR9) agonist was administered in combination with D-galactosamine (GalN) that caused relatively liver-specific inflammation and toxicity. In the control mice group injected with phosphate-buffered saline (PBS) (acute psychological stress model associated with blood sampling), the serum triglyceride (TG) levels showed a rapid decrease followed by a rebound at 24 h as we have recently reported. However, such a TG rebound was impaired in the CpG/GalN- and solely CpG-treated groups of mice despite an absence of liver injury based on serum alanine aminotransferase levels in the latter group. Thus, the stress-associated serum TG rebound was abrogated by the injection of a sub-hepatotoxic CpG dose. In the second experiment, we simply measured the hepatic CD36 and SACRB1 (the gene for scavenger receptor B1 (SR-B1)) transcripts after the i.p. administration of PBS, CpG or CpG/GalN. There was a remarkable elevation of hepatic CD36 transcript expression in both the CpG- and CpG/GalN-treated mice at 8 h post-CpG injection whereas the increase in the PBS-treated mice was slower than the former two groups, suggesting that hepatic CD36 transcript expression is more pronounced in the combined stress models than under psychological stress alone. The individual mice data showed that the increase in CD36 expression was accompanied by a reduction in SCARB1 mRNA, showing reciprocal regulation between these two genes. Together with our previously reported findings, these data suggest that, in a murine model combining psychological stress with TLR-triggered hepatic inflammation, the psychological stress facilitates liver uptake of plasma TG (and its components fatty acids), but the subsequent re-esterification and/or release of TG-rich lipoproteins from the liver is impaired due to the concomitant TLR-signaling. We hypothesize that lipid metabolism during acute stress shifts toward an elevated hepatic uptake of lipids due to concomitant TLR signaling, facilitating the clearance of bacterial lipids by the liver.展开更多
When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-fr...When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-frame observation and cyclic redundancy check(CRC)grouping combined dynamic framed slotted Aloha(SUBF-CGDFSA)algorithm is proposed.The algorithm combines the precise estimation method of the quantity of large-scale tags,the large-scale tags grouping mechanism based on CRC pseudo-randomcharacteristics,and the Aloha anti-collision optimization mechanism based on sub-frame observation.By grouping tags and sequentially identifying themwithin subframes,it accurately estimates the number of remaining tags and optimizes frame length accordingly to improve efficiency in large-scale RFID systems.Simulation outcomes demonstrate that this proposed algorithmcan effectively break through the system throughput bottleneck of 36.8%,which is up to 30%higher than the existing DFSA standard scheme,and has more significant advantages,which is suitable for application in largescale RFID tags scenarios.展开更多
Background:The aim of this study was to investigate the influence of marking meth-ods on the outcomes of body composition analysis and provide guidance for the se-lection of marking methods in mouse body composition a...Background:The aim of this study was to investigate the influence of marking meth-ods on the outcomes of body composition analysis and provide guidance for the se-lection of marking methods in mouse body composition analysis.Methods:Male C57BL/6J mice aged 6 weeks were randomly assigned for pre-and post-ear tagging measurements.The body composition of the mice was measured using a small animal body composition analyzer,which provided measurements of the mass of fat,lean,and free fluid.Then,the mass of fat,lean and free fluid to body weight ratio was gained.Further data analysis was conducted to obtain the range and coeffi-cient of variation in body composition measurements for each mouse.The distribution of fat and lean tissue in the mice was also analyzed by comparing the fat-to-lean ratio.Results:(1)The mass of all body composition components in the ear tagging group was significantly lower than that in the control group.(2)There was a significant in-crease in the range and coefficient of variation of body composition measurements between the ear tagging group and the control group.(3)The fat-to-lean ratio in the ear tagging group was significantly lower than that in the control group.Conclusions:Ear tagging significantly lowered the results of body composition analy-sis in mice and higher the results of measurement error.Therefore,ear tagging should be avoided as much as possible when conducting body composition analysis experi-ments in mice.展开更多
Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or d...Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively.展开更多
This study was to explore the functional mechanism of rare earth regulating soybean leaves and the characteristics and functions of differentially expressed proteins under the regulation of rare earth. In this study, ...This study was to explore the functional mechanism of rare earth regulating soybean leaves and the characteristics and functions of differentially expressed proteins under the regulation of rare earth. In this study, Dongnong 42 was used as material, and 30 mg·L^(-1) CeCl_(3) solution was sprayed on soybean leaves at the seedling stage. Tandem mass tag(TMT) quantitative proteomics technique and bioinformatics analysis were used to identify soybean leaf proteins. A total of 8 510 proteins were identified, and 127 differentially expressed proteins(DEPs) in response to rare earth cerium regulation were identified, among which 64 were upregulated and 63 were down-regulated. The gene ontology(GO) annotation indicated that DEPs were mainly involved in metabolic process, cellular process, response to stimulus, biological regulation, and response to a stimulus;DEPs in cell module categories were mainly involved in cells, cell part, organelle, membrane, membrane part, organelle par, and protein-containing complex;DEPs in molecular functional categories were mainly involved in catalytic activity, binding and antioxidant activity. Kyoto encyclopedia of genes and genomes(KEGG) pathway significantly enriched starch and sucrose metabolism, glycolysis/gluconeogenesis, galactose metabolism, pentose phosphate pathway, and MAPK signaling pathway-plant. These DEPs were mainly involved in photosynthesis, glucose metabolism and stress response. Forty-six differential protein interaction networks were identified by protein interaction network analysis. This experiment provided a reference for studies of the mechanism of rare earth cerium regulating soybean leaf function from the proteomic perspective.展开更多
BACKGROUND Accumulating evidence suggests that the gut microbiome is involved in the pathogenesis of insulin resistance(IR).However,the link between two of the most prevalent bowel disorders,chronic diarrhea and const...BACKGROUND Accumulating evidence suggests that the gut microbiome is involved in the pathogenesis of insulin resistance(IR).However,the link between two of the most prevalent bowel disorders,chronic diarrhea and constipation,and the triglyceride glucose(TyG)index,a marker of IR,has not yet been investigated.AIM To investigate the potential association between TyG and the incidence of chronic diarrhea and constipation.METHODS This cross-sectional study enrolled 2400 participants from the National Health and Nutrition Examination Survey database from 2009-2010.TyG was used as an exposure variable,with chronic diarrhea and constipation as determined by the Bristol Stool Form Scale used as the outcome variables.A demographic investigation based on TyG quartile subgroups was performed.The application of multivariate logistic regression models and weighted generalized additive models revealed potential correlations between TyG,chronic diarrhea,and constipation.Subgroup analyses were performed to examine the stability of any potential associations.RESULTS In the chosen sample,chronic diarrhea had a prevalence of 8.00%,while chronic constipation had a prevalence of 8.04%.In multiple logistic regression,a more prominent positive association was found between TyG and chronic diarrhea,particularly in model 1(OR=1.45;95%CI:1.17-1.79,P=0.0007)and model 2(OR=1.40;95%CI:1.12-1.76,P=0.0033).No definite association was observed between the TyG levels and chronic constipation.The weighted generalized additive model findings suggested a more substantial positive association with chronic diarrhea when TyG was less than 9.63(OR=1.89;95%CI:1.05-3.41,P=0.0344),and another positive association with chronic constipation when it was greater than 8.2(OR=1.74;95%CI:1.02-2.95,P=0.0415).The results of the subgroup analyses further strengthen the extrapolation of these results to a wide range of populations.CONCLUSION Higher TyG levels were positively associated with abnormal bowel health.展开更多
Proteomics is a powerful tool that can be used to elucidate the underlying mechanisms of diseases and identify new biomarkers.Therefore,it may also be helpful for understanding the detailed pathological mechanism of t...Proteomics is a powerful tool that can be used to elucidate the underlying mechanisms of diseases and identify new biomarkers.Therefore,it may also be helpful for understanding the detailed pathological mechanism of traumatic brain injury(TBI).In this study,we performed Tandem Mass Tag-based quantitative analysis of cortical proteome profiles in a mouse model of TBI.Our results showed that there were 302 differentially expressed proteins in TBI mice compared with normal mice 7 days after injury.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that these differentially expressed proteins were predominantly involved in inflammatory responses,including complement and coagulation cascades,as well as chemokine signaling pathways.Subsequent transcription factor analysis revealed that the inflammation-related transcription factors NF-κB1,RelA,IRF1,STAT1,and Spi1 play pivotal roles in the secondary injury that occurs after TBI,which further corroborates the functional enrichment for inflammatory factors.Our results suggest that inflammation-related proteins and inflammatory responses are promising targets for the treatment of TBI.展开更多
Radio Frequency Identification(RFID)technology has been widely used to identify missing items.In many applications,rapidly pinpointing key tags that are attached to favorable or valuable items is critical.To realize t...Radio Frequency Identification(RFID)technology has been widely used to identify missing items.In many applications,rapidly pinpointing key tags that are attached to favorable or valuable items is critical.To realize this goal,interference from ordinary tags should be avoided,while key tags should be efficiently verified.Despite many previous studies,how to rapidly and dynamically filter out ordinary tags when the ratio of ordinary tags changes has not been addressed.Moreover,how to efficiently verify missing key tags in groups rather than one by one has not been explored,especially with varying missing rates.In this paper,we propose an Efficient and Robust missing Key tag Identification(ERKI)protocol that consists of a filtering mechanism and a verification mechanism.Specifically,the filtering mechanism adopts the Bloom filter to quickly filter out ordinary tags and uses the labeling vector to optimize the Bloom filter's performance when the key tag ratio is high.Furthermore,the verification mechanism can dynamically verify key tags according to the missing rates,in which an appropriate number of key tags is mapped to a slot and verified at once.Moreover,we theoretically analyze the parameters of the ERKI protocol to minimize its execution time.Extensive numerical results show that ERKI can accelerate the execution time by more than 2.14compared with state-of-the-art solutions.展开更多
基金This study was reviewed and approved by the Maternal and child health hospital of Hubei Province(Approval No.20201025).
文摘BACKGROUND As a well-known fact to the public,gestational diabetes mellitus(GDM)could bring serious risks for both pregnant women and infants.During this important investigation into the linkage between GDM patients and their altered expression in the serum,proteomics techniques were deployed to detect the differentially expressed proteins(DEPs)of in the serum of GDM patients to further explore its pathogenesis,and find out possible biomarkers to forecast GDM occurrence.METHODS Subjects were divided into GDM and normal control groups according to the IADPSG diagnostic criteria.Serum samples were randomly selected from four cases in each group at 24-28 wk of gestation,and the blood samples were identified by applying iTRAQ technology combined with liquid chromatography-tandem mass spectrometry.Key proteins and signaling pathways associated with GDM were identified by bioinformatics analysis,and the expression of key proteins in serum from 12 wk to 16 wk of gestation was further verified using enzyme-linked immunosorbent assay (ELISA).RESULTS Forty-seven proteins were significantly differentially expressed by analyzing the serum samples between the GDMgravidas as well as the healthy ones. Among them, 31 proteins were found to be upregulated notably and the rest16 proteins were downregulated remarkably. Bioinformatic data report revealed abnormal expression of proteinsassociated with lipid metabolism, coagulation cascade activation, complement system and inflammatory responsein the GDM group. ELISA results showed that the contents of RBP4, as well as ANGPTL8, increased in the serumof GDM gravidas compared with the healthy ones, and this change was found to initiate from 12 wk to 16 wk ofgestation.CONCLUSION GDM symptoms may involve abnormalities in lipid metabolism, coagulation cascade activation, complementsystem and inflammatory response. RBP4 and ANGPTL8 are expected to be early predictors of GDM.
文摘d-Allulose, a rare sugar, exerts anti-obesity effects by inhibiting hepatic lipogenesis and promoting energy expenditure. Medium-chain triglycerides (MCTs) consist of three medium-chain fatty acids connected by glycerol. MCTs have been extensively investigated for their ability to reduce body fat accumulation. We previously investigated the anti-obesity effects of a combination of dietary d-allulose and MCT (5% - 13%) in rats;however, we could not confirm the anti-obesity effects of MCT or observed synergetic effects between d-allulose and MCT on body fat loss. We speculated that our previous studies were influenced by the excessive amount of MCT in the diets. Therefore, in this study, we aimed to investigate the anti-obesity effects of the simultaneous intake of d-allulose and MCT in rats fed an obesity-inducing high-fat diet with a low amount of MCTs (2%). Thirty-two male Wistar rats (3-week-old) were randomly divided into four groups: control, d-allulose, MCT, and d-allulose + MCT groups. Rats in each group were fed ad libitum on a control (no d-Allulose or MCT), 5% d-allulose, 2% MCT, or 5% d-allulose + 2% MCT diets for 16 weeks. Abdominal adipose tissue weights were significantly lower in the d-allulose diet group than in the control group, whereas no differences were observed between results of the MCT-supplemented groups. The total body fat mass was significantly lower in the d-allulose and MCT diet groups than in the control group, but no differences were observed between the MCT-supplemented groups. These results suggested that anti-obesity effects of dietary d-allulose were observed, and the effects of dietary MCTs were weaker than those of d-allulose. Moreover, we confirmed the interaction between dietary d-allulose and MCT on indicators of obesity. Interestingly, their effects were not synergistic, as MCT supplementation offset the anti-obesity effects of dietary d-allulose. However, the specific mechanisms underlying those effects remain unknown, warranting further investigation.
文摘Background: In response to the escalating burden of cardiovascular diseases (CVDs) worldwide, exacerbated by lifestyle changes and socioeconomic shifts, acute coronary syndromes (ACS) stand out as a leading cause of morbidity and mortality. The pivotal role of insulin resistance in the pathogenesis of atherosclerosis, independent of traditional risk factors, has garnered significant interest. Objective: This review aims to synthesize the recent advancements in the utilization of the triglyceride glucose index (TyG index) as a biomarker for assessing the severity and predicting the prognosis of ACS lesions. Methods: A systematic search was conducted across PubMed, Embase, and Scopus databases, incorporating keywords such as “triglyceride glucose index”, “TyG index”, “acute coronary syndrome”, “cardiovascular disease”, “insulin resistance”, “coronary artery calcification”, “SYNTAX score”, “Gensini score”, and “major adverse cardiac events”. Studies were included from the inception of each database up to July 2024. Selection criteria encompassed observational studies, case-control studies, and randomized controlled trials, with a particular emphasis on evaluating the diagnostic and prognostic value of the TyG index in patients with acute coronary syndromes. Ultimately, 46 publications met the inclusion criteria. Data extraction and quality assessment were performed in accordance with established guidelines. Results: Evidence suggests that the TyG index, reflecting insulin resistance, blood glucose, and lipid levels, is significantly associated with lesion severity in ACS, including coronary artery calcification, SYNTAX score, and Gensini score. Moreover, it demonstrates predictive power for major adverse cardiovascular events, underscoring its potential as a valuable tool in clinical decision-making. Conclusion: The review highlights the emerging role of the TyG index in the assessment and prognosis of ACS, advocating for its incorporation into clinical practice as a complement to existing diagnostic modalities. However, the establishment of standardized reference ranges and further validation across diverse populations are warranted to refine its applicability in personalized medicine. The interdisciplinary approach is essential to advance our understanding of the complex interplay between insulin resistance and cardiovascular disease, paving the way for the development of more effective prevention and treatment strategies.
基金supported by the National Natural Science Foundation of China(No.62271274).
文摘In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques.
基金The Hangzhou Science and Technology Bureau,No.B20230285.
文摘Hypertriglyceridemia is the third leading cause of acute pancreatitis(AP),and its incidence is increasing.Due to its relatively insidious etiology,it is easy to be ignored in the early stages.In China,Chaiqin Chengqi Decoction(CQCQD)has long been employed for treating AP.AIM To evaluate the effectiveness of CQCQD in patients diagnosed with mild/moderately severe hypertriglyceridemic AP(HTG-AP).METHODS In this study,the clinical data of 39 patients with HTG-AP admitted from January 2019 to November 2022 were collected.The changes of blood lipids,gastrointestinal symptoms,and abdominal pain before and after treatment were analyzed and compared between the two groups.RESULTS Twenty patients were treated with the conventional HTG-AP regimen,and 19 patients were additionally treated with CQCQD.After receiving treatment,the triglycerides(TG)level of the CQCQD group was lower than that of the CQCQD group(3.14±0.25 mmol/L vs 4.96±0.47 mmol/L,P<0.01).After 3 d of treatment,the patients in the CQCQD group had more bowel movements than the control group(2.51±0.25 times vs 1.00±0.17 times,P=0.01).The gastrointestinal function of most patients returned to normal,and the acute gastrointestinal injury score was significantly lower than that of the control group(0.11±0.07 vs 0.42±0.11,P<0.01).CONCLUSION In patients with HTG-AP,CQCQD can significantly reduce the TG level,shorten the recovery time of defecation,significantly improve the gastrointestinal function.
文摘Changes in lipid metabolism have been implicated in protection against infectious diseases. In the first experiment of this study, we measured clinical lipid parameters in a murine model where the unmethylated cytidine phosphate guanosine (CpG) oligodinucleotide (ODN1826), a Toll-like receptor 9 (TLR9) agonist was administered in combination with D-galactosamine (GalN) that caused relatively liver-specific inflammation and toxicity. In the control mice group injected with phosphate-buffered saline (PBS) (acute psychological stress model associated with blood sampling), the serum triglyceride (TG) levels showed a rapid decrease followed by a rebound at 24 h as we have recently reported. However, such a TG rebound was impaired in the CpG/GalN- and solely CpG-treated groups of mice despite an absence of liver injury based on serum alanine aminotransferase levels in the latter group. Thus, the stress-associated serum TG rebound was abrogated by the injection of a sub-hepatotoxic CpG dose. In the second experiment, we simply measured the hepatic CD36 and SACRB1 (the gene for scavenger receptor B1 (SR-B1)) transcripts after the i.p. administration of PBS, CpG or CpG/GalN. There was a remarkable elevation of hepatic CD36 transcript expression in both the CpG- and CpG/GalN-treated mice at 8 h post-CpG injection whereas the increase in the PBS-treated mice was slower than the former two groups, suggesting that hepatic CD36 transcript expression is more pronounced in the combined stress models than under psychological stress alone. The individual mice data showed that the increase in CD36 expression was accompanied by a reduction in SCARB1 mRNA, showing reciprocal regulation between these two genes. Together with our previously reported findings, these data suggest that, in a murine model combining psychological stress with TLR-triggered hepatic inflammation, the psychological stress facilitates liver uptake of plasma TG (and its components fatty acids), but the subsequent re-esterification and/or release of TG-rich lipoproteins from the liver is impaired due to the concomitant TLR-signaling. We hypothesize that lipid metabolism during acute stress shifts toward an elevated hepatic uptake of lipids due to concomitant TLR signaling, facilitating the clearance of bacterial lipids by the liver.
基金supported in part by National Natural Science Foundation of China(U22B2004,62371106)in part by the Joint Project of China Mobile Research Institute&X-NET(Project Number:2022H002)+6 种基金in part by the Pre-Research Project(31513070501)in part by National Key R&D Program(2018AAA0103203)in part by Guangdong Provincial Research and Development Plan in Key Areas(2019B010141001)in part by Sichuan Provincial Science and Technology Planning Program of China(2022YFG0230,2023YFG0040)in part by the Fundamental Enhancement Program Technology Area Fund(2021-JCJQ-JJ-0667)in part by the Joint Fund of ZF and Ministry of Education(8091B022126)in part by Innovation Ability Construction Project for Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT(2303-510109-04-03-318020).
文摘When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-frame observation and cyclic redundancy check(CRC)grouping combined dynamic framed slotted Aloha(SUBF-CGDFSA)algorithm is proposed.The algorithm combines the precise estimation method of the quantity of large-scale tags,the large-scale tags grouping mechanism based on CRC pseudo-randomcharacteristics,and the Aloha anti-collision optimization mechanism based on sub-frame observation.By grouping tags and sequentially identifying themwithin subframes,it accurately estimates the number of remaining tags and optimizes frame length accordingly to improve efficiency in large-scale RFID systems.Simulation outcomes demonstrate that this proposed algorithmcan effectively break through the system throughput bottleneck of 36.8%,which is up to 30%higher than the existing DFSA standard scheme,and has more significant advantages,which is suitable for application in largescale RFID tags scenarios.
文摘Background:The aim of this study was to investigate the influence of marking meth-ods on the outcomes of body composition analysis and provide guidance for the se-lection of marking methods in mouse body composition analysis.Methods:Male C57BL/6J mice aged 6 weeks were randomly assigned for pre-and post-ear tagging measurements.The body composition of the mice was measured using a small animal body composition analyzer,which provided measurements of the mass of fat,lean,and free fluid.Then,the mass of fat,lean and free fluid to body weight ratio was gained.Further data analysis was conducted to obtain the range and coeffi-cient of variation in body composition measurements for each mouse.The distribution of fat and lean tissue in the mice was also analyzed by comparing the fat-to-lean ratio.Results:(1)The mass of all body composition components in the ear tagging group was significantly lower than that in the control group.(2)There was a significant in-crease in the range and coefficient of variation of body composition measurements between the ear tagging group and the control group.(3)The fat-to-lean ratio in the ear tagging group was significantly lower than that in the control group.Conclusions:Ear tagging significantly lowered the results of body composition analy-sis in mice and higher the results of measurement error.Therefore,ear tagging should be avoided as much as possible when conducting body composition analysis experi-ments in mice.
基金supported by Yunnan Provincial Major Science and Technology Special Plan Projects(Grant Nos.202202AD080003,202202AE090008,202202AD080004,202302AD080003)National Natural Science Foundation of China(Grant Nos.U21B2027,62266027,62266028,62266025)Yunnan Province Young and Middle-Aged Academic and Technical Leaders Reserve Talent Program(Grant No.202305AC160063).
文摘Chinese named entity recognition(CNER)has received widespread attention as an important task of Chinese information extraction.Most previous research has focused on individually studying flat CNER,overlapped CNER,or discontinuous CNER.However,a unified CNER is often needed in real-world scenarios.Recent studies have shown that grid tagging-based methods based on character-pair relationship classification hold great potential for achieving unified NER.Nevertheless,how to enrich Chinese character-pair grid representations and capture deeper dependencies between character pairs to improve entity recognition performance remains an unresolved challenge.In this study,we enhance the character-pair grid representation by incorporating both local and global information.Significantly,we introduce a new approach by considering the character-pair grid representation matrix as a specialized image,converting the classification of character-pair relationships into a pixel-level semantic segmentation task.We devise a U-shaped network to extract multi-scale and deeper semantic information from the grid image,allowing for a more comprehensive understanding of associative features between character pairs.This approach leads to improved accuracy in predicting their relationships,ultimately enhancing entity recognition performance.We conducted experiments on two public CNER datasets in the biomedical domain,namely CMeEE-V2 and Diakg.The results demonstrate the effectiveness of our approach,which achieves F1-score improvements of 7.29 percentage points and 1.64 percentage points compared to the current state-of-the-art(SOTA)models,respectively.
基金Supported by the National Natural Science Foundation of China(31471440)。
文摘This study was to explore the functional mechanism of rare earth regulating soybean leaves and the characteristics and functions of differentially expressed proteins under the regulation of rare earth. In this study, Dongnong 42 was used as material, and 30 mg·L^(-1) CeCl_(3) solution was sprayed on soybean leaves at the seedling stage. Tandem mass tag(TMT) quantitative proteomics technique and bioinformatics analysis were used to identify soybean leaf proteins. A total of 8 510 proteins were identified, and 127 differentially expressed proteins(DEPs) in response to rare earth cerium regulation were identified, among which 64 were upregulated and 63 were down-regulated. The gene ontology(GO) annotation indicated that DEPs were mainly involved in metabolic process, cellular process, response to stimulus, biological regulation, and response to a stimulus;DEPs in cell module categories were mainly involved in cells, cell part, organelle, membrane, membrane part, organelle par, and protein-containing complex;DEPs in molecular functional categories were mainly involved in catalytic activity, binding and antioxidant activity. Kyoto encyclopedia of genes and genomes(KEGG) pathway significantly enriched starch and sucrose metabolism, glycolysis/gluconeogenesis, galactose metabolism, pentose phosphate pathway, and MAPK signaling pathway-plant. These DEPs were mainly involved in photosynthesis, glucose metabolism and stress response. Forty-six differential protein interaction networks were identified by protein interaction network analysis. This experiment provided a reference for studies of the mechanism of rare earth cerium regulating soybean leaf function from the proteomic perspective.
文摘BACKGROUND Accumulating evidence suggests that the gut microbiome is involved in the pathogenesis of insulin resistance(IR).However,the link between two of the most prevalent bowel disorders,chronic diarrhea and constipation,and the triglyceride glucose(TyG)index,a marker of IR,has not yet been investigated.AIM To investigate the potential association between TyG and the incidence of chronic diarrhea and constipation.METHODS This cross-sectional study enrolled 2400 participants from the National Health and Nutrition Examination Survey database from 2009-2010.TyG was used as an exposure variable,with chronic diarrhea and constipation as determined by the Bristol Stool Form Scale used as the outcome variables.A demographic investigation based on TyG quartile subgroups was performed.The application of multivariate logistic regression models and weighted generalized additive models revealed potential correlations between TyG,chronic diarrhea,and constipation.Subgroup analyses were performed to examine the stability of any potential associations.RESULTS In the chosen sample,chronic diarrhea had a prevalence of 8.00%,while chronic constipation had a prevalence of 8.04%.In multiple logistic regression,a more prominent positive association was found between TyG and chronic diarrhea,particularly in model 1(OR=1.45;95%CI:1.17-1.79,P=0.0007)and model 2(OR=1.40;95%CI:1.12-1.76,P=0.0033).No definite association was observed between the TyG levels and chronic constipation.The weighted generalized additive model findings suggested a more substantial positive association with chronic diarrhea when TyG was less than 9.63(OR=1.89;95%CI:1.05-3.41,P=0.0344),and another positive association with chronic constipation when it was greater than 8.2(OR=1.74;95%CI:1.02-2.95,P=0.0415).The results of the subgroup analyses further strengthen the extrapolation of these results to a wide range of populations.CONCLUSION Higher TyG levels were positively associated with abnormal bowel health.
基金supported by the National Natural Science Foundation of China,No. 81771327a grant for the Platform Construction of Basic Research and Clinical Translation of Nervous System Injury,China,No. PXM2020_026280_000002 (both to BYL)
文摘Proteomics is a powerful tool that can be used to elucidate the underlying mechanisms of diseases and identify new biomarkers.Therefore,it may also be helpful for understanding the detailed pathological mechanism of traumatic brain injury(TBI).In this study,we performed Tandem Mass Tag-based quantitative analysis of cortical proteome profiles in a mouse model of TBI.Our results showed that there were 302 differentially expressed proteins in TBI mice compared with normal mice 7 days after injury.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that these differentially expressed proteins were predominantly involved in inflammatory responses,including complement and coagulation cascades,as well as chemokine signaling pathways.Subsequent transcription factor analysis revealed that the inflammation-related transcription factors NF-κB1,RelA,IRF1,STAT1,and Spi1 play pivotal roles in the secondary injury that occurs after TBI,which further corroborates the functional enrichment for inflammatory factors.Our results suggest that inflammation-related proteins and inflammatory responses are promising targets for the treatment of TBI.
基金This work was supported in part by the National Natural Science Foundation of China under project contracts No.61971113 and 61901095in part by National Key R&D Program under project contract No.2018AAA0103203+5 种基金in part by Guangdong Provincial Research and Development Plan in Key Areas under project contract No.2019B010141001 and 2019B010142001in part by Sichuan Provincial Science and Technology Planning Program under project contracts No.2020YFG0039,No.2021YFG0013 and No.2021YFH0133in part by Ministry of Education China Mobile Fund Program under project contract No.MCM20180104in part by Yibin Science and Technology Program-Key Projects under project contract No.2018ZSF001 and 2019GY001in part by Central University Business Fee Program under project contract No.A03019023801224the Central Universities under Grant ZYGX2019Z022.
文摘Radio Frequency Identification(RFID)technology has been widely used to identify missing items.In many applications,rapidly pinpointing key tags that are attached to favorable or valuable items is critical.To realize this goal,interference from ordinary tags should be avoided,while key tags should be efficiently verified.Despite many previous studies,how to rapidly and dynamically filter out ordinary tags when the ratio of ordinary tags changes has not been addressed.Moreover,how to efficiently verify missing key tags in groups rather than one by one has not been explored,especially with varying missing rates.In this paper,we propose an Efficient and Robust missing Key tag Identification(ERKI)protocol that consists of a filtering mechanism and a verification mechanism.Specifically,the filtering mechanism adopts the Bloom filter to quickly filter out ordinary tags and uses the labeling vector to optimize the Bloom filter's performance when the key tag ratio is high.Furthermore,the verification mechanism can dynamically verify key tags according to the missing rates,in which an appropriate number of key tags is mapped to a slot and verified at once.Moreover,we theoretically analyze the parameters of the ERKI protocol to minimize its execution time.Extensive numerical results show that ERKI can accelerate the execution time by more than 2.14compared with state-of-the-art solutions.