Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand...Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios.展开更多
DV-Hop localization algorithm has greater localization error which estimates distance from an unknown node to the different anchor nodes by using estimated average size of a hop to achieve the location of the unknown ...DV-Hop localization algorithm has greater localization error which estimates distance from an unknown node to the different anchor nodes by using estimated average size of a hop to achieve the location of the unknown node.So an improved DV-Hop localization algorithm based on correctional average size of a hop,HDCDV-Hop algorithm,is proposed.The improved algorithm corrects the estimated distance between the unknown node and different anchor nodes based on fractional hop count information and relatively accurate coordinates of the anchor nodes information,and it uses the improved Differential Evolution algorithm to get the estimate location of unknown nodes so as to further reduce the localization error.Simulation results show that our proposed algorithm have lower localization error and higher localization accuracy compared with the original DV-Hop algorithm and other classical improved algorithms.展开更多
At present, most underwater positioning algorithms improve the positioning accuracy by increasing the number of anchor nodes which resulting in the increasing energy consumption. To solve this problem, the paper propo...At present, most underwater positioning algorithms improve the positioning accuracy by increasing the number of anchor nodes which resulting in the increasing energy consumption. To solve this problem, the paper proposes a localization algorithm assisted by mobile anchor node and based on region determination(LMRD), which not only improves the positioning accuracy of nodes positioning but also reduces the energy consumption. This algorithm is divided into two stages: region determination stage and location positioning stage. In the region determination stage, the target region is divided into several sub-regions by the region division strategy with the smallest overlap rate which can reduce the number of virtual anchor nodes and lock the target node to a sub-region, and then through the planning of mobile nodes to optimize the travel path, reduce the moving distance, and reduce system energy consumption. In the location positioning stage, the target node location can be calculated using the HILBERT path planning and trilateration. The simulation results show that the proposed algorithm can improve the positioning accuracy when the energy consumption is reduced.展开更多
Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration whe...Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration when using these approaches.First,the algorithm is apt to be influenced by illumination.Second,algorithm should have less computational complexity.Third,the depth information of images needs to be estimated without other sensors.This paper investigates a famous local invariant feature named speeded up robust feature(SURF),and proposes a highspeed and robust image registration and localization algorithm based on it.With supports from feature tracking and pose estimation methods,the proposed algorithm can compute camera poses under different conditions of scale,viewpoint and rotation so as to precisely localize object's position.At last,the study makes registration experiment by scale invariant feature transform(SIFT),SURF and the proposed algorithm,and designs a method to evaluate their performances.Furthermore,this study makes object retrieval test on remote sensing video.For there is big deformation on remote sensing frames,the registration algorithm absorbs the Kanade-Lucas-Tomasi(KLT) 3-D coplanar calibration feature tracker methods,which can localize interesting targets precisely and efficiently.The experimental results prove that the proposed method has a higher localization speed and lower localization error rate than traditional visual simultaneous localization and mapping(vSLAM) in a period of time.展开更多
Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and undergrou...Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and underground parking, the accuracy of GPS and even AGPS will be greatly reduced. Since Indoor localization requests higher accuracy, using GPS or AGPS for indoor localization is not feasible in the current view. RSSI-based trilateral localization algorithm, due to its low cost, no additional hardware support, and easy-understanding, it becomes the mainstream localization algorithm in wireless sensor networks. With the development of wireless sensor networks and smart devices, the number of WIFI access point in these buildings is increasing, as long as a mobile smart device can detect three or three more known WIFI hotspots’ positions, it would be relatively easy to realize self-localization (Usually WIFI access points locations are fixed). The key problem is that the RSSI value is relatively vulnerable to the influence of the physical environment, causing large calculation error in RSSI-based localization algorithm. The paper proposes an improved RSSI-based algorithm, the experimental results show that compared with original RSSI-based localization algorithms the algorithm improves the localization accuracy and reduces the deviation.展开更多
As much as accurate or precise position estimation is always desirable, coarse accuracy due to sensor node localization is often sufficient. For such level of accuracy, Range-free localization techniques are being exp...As much as accurate or precise position estimation is always desirable, coarse accuracy due to sensor node localization is often sufficient. For such level of accuracy, Range-free localization techniques are being explored as low cost alternatives to range based localization techniques. To manage cost, few location aware nodes, called anchors are deployed in the wireless sensor environment. It is from these anchors that all other free nodes are expected to estimate their own positions. This paper therefore, takes a look at some of the foremost Range-free localization algorithms, detailing their limitations, with a view to proposing a modified form of Centroid Localization Algorithm called Reach Centroid Localization Algorithm. The algorithm employs a form of anchor nodes position validation mechanism by looking at the consistency in the quality of Received Signal Strength. Each anchor within the vicinity of a free node seeks to validate the actual position or proximity of other anchors within its vicinity using received signal strength. This process mitigates multipath effects of radio waves, particularly in an enclosed environment, and consequently limits localization estimation errors and uncertainties. Centroid Localization Algorithm is then used to estimate the location of a node using the anchors selected through the validation mechanism. Our approach to localization becomes more significant, particularly in indoor environments, where radio signal signatures are inconsistent or outrightly unreliable. Simulated results show a significant improvement in localization accuracy when compared with the original Centroid Localization Algorithm, Approximate Point in Triangulation and DV-Hop.展开更多
In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone ...In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account.展开更多
Wise healthcare is a typical application of wireless sensor network(WSN), which uses sensors to monitor the physiological state of nursing targets and locate their position in case of an emergency situation. The locat...Wise healthcare is a typical application of wireless sensor network(WSN), which uses sensors to monitor the physiological state of nursing targets and locate their position in case of an emergency situation. The location of targets need to be determined and reported to the control center,and this leads to the localization problem. While localization in healthcare field demands high accuracy and regional adaptability, the information processing mechanism of human thinking has been introduced,which includes knowledge accumulation, knowledge fusion and knowledge expansion. Furthermore, a fuzzy decision based localization approach is proposed. Received signal strength(RSS) at references points are obtained and processed as position relationship indicators, using fuzzy set theory in the knowledge accumulation stage; after that, optimize degree of membership corresponding to each anchor nodes in different environments during knowledge fusion; the matching degree of reference points is further calculated and sorted in decision-making, and the coordinates of several points with the highest matching degree are utilized to estimate the location of unknown nodes while knowledge expansion. Simulation results show that the proposed algorithm get better accuracy performance compared to several traditional algorithms under different typical occasions.展开更多
Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were de...Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms.展开更多
In this paper, the self-localization problem is studied. It is one of the key technologies in wireless sensor networks (WSNs). And five localization algorithms: Centroid algorithm, Amorphous algorithm, DV-hop algorith...In this paper, the self-localization problem is studied. It is one of the key technologies in wireless sensor networks (WSNs). And five localization algorithms: Centroid algorithm, Amorphous algorithm, DV-hop algorithm, APIT algorithm and Bounding Box algorithm are discussed. Simulation of those five localization algorithms is done by MATLAB. The simulation results show that the positioning error of Amorphous algorithm is the minimum. Considering economy and localization accuracy, the Amorphous algorithm can achieve the best localization performance under certain conditions.展开更多
In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accele...In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.展开更多
Underwater sensor network can achieve the unmanned environmental monitoring and military monitoring missions.Underwater acoustic sensor node cannot rely on the GPS to position itself,and the traditional indirect posit...Underwater sensor network can achieve the unmanned environmental monitoring and military monitoring missions.Underwater acoustic sensor node cannot rely on the GPS to position itself,and the traditional indirect positioning methods used in Ad Hoc networks are not fully applicable to the localization of underwater acoustic sensor networks.In this paper,we introduce an improved underwater acoustic network localization algorithm.The algorithm processes the raw data before localization calculation to enhance the tolerance of random noise.We reduce the redundancy of the calculation results by using a more accurate basic algorithm and an adjusted calculation strategy.The improved algorithm is more suitable for the underwater acoustic sensor network positioning.展开更多
For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be colle...For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase.展开更多
Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each sub...Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each subset of variables, where optimization of configuration variables is simplified as a linear least-squares problem (LSP). Convergence of current symmetric localization algorithms is discussed firstly. It is shown that simply taking the solution of the LSP as start of the next iteration may result in divergence or incorrect convergence. Therefore in our enhanced algorithms, line search is performed along the solution of the LSP in order to find a better point reducing the value of objective function. We choose this point as start of the next iteration. Better convergence is verified by numerical simulation. Besides, imposing boundary constraints on the LSP proves to be another efficient way.展开更多
Combined with naval vessel practical antisubmarine equipment of towed linear array sonar,a mathematical model of naval vessel localization for submarine based on bearing measurement was built,and localization algorith...Combined with naval vessel practical antisubmarine equipment of towed linear array sonar,a mathematical model of naval vessel localization for submarine based on bearing measurement was built,and localization algorithm was given to solve submarine movement parameters.Localizaiton errors were analyzed.Based on localization model and algorithm,simulations were done to study the effect of factors such as initial distance between submarine and the naval vessel,submarine initial bearing angle measured by the naval vessel and submarine course on localization performance,and then simulation results were given and analyzed.The results have practical value to instruct real antisubmarine.Simulation results show that different target movement situations have great influence on sonar detection and localization performance,so the reasonable choice of sonar position and detection bearing according to the target movement situation can improve sonar detection and localization performance to some degree.展开更多
This paper present a new method based on Chaos Genetic Algorithm (CGA) to localize the human iris in a given image. First, the iris image is preprocessed to estimate the range of the iris localization, and then CGA is...This paper present a new method based on Chaos Genetic Algorithm (CGA) to localize the human iris in a given image. First, the iris image is preprocessed to estimate the range of the iris localization, and then CGA is used to extract the boundary of the ~iris . Simulation results show that the proposed algorithms is efficient and robust, and can achieve sub pixel precision. Because Genetic Algorithms (GAs) can search in a large space, the algorithm does not need accurate estimation of iris center for subsequent localization, and hence can lower the requirement for original iris image processing. On this point, the present localization algirithm is superior to Daugman's algorithm.展开更多
The Internet of Things(IoT)is envisioned as a network of various wireless sensor nodes communicating with each other to offer state-of-the-art solutions to real-time problems.These networks of wireless sensors monitor...The Internet of Things(IoT)is envisioned as a network of various wireless sensor nodes communicating with each other to offer state-of-the-art solutions to real-time problems.These networks of wireless sensors monitor the physical environment and report the collected data to the base station,allowing for smarter decisions.Localization in wireless sensor networks is to localize a sensor node in a two-dimensional plane.However,in some application areas,such as various surveillances,underwater monitoring systems,and various environmental monitoring applications,wireless sensors are deployed in a three-dimensional plane.Recently,localization-based applications have emerged as one of the most promising services related to IoT.In this paper,we propose a novel distributed range-free algorithm for node localization in wireless sensor networks.The proposed three-dimensional hop localization algorithm is based on the distance error correction factor.In this algorithm,the error decreases with the localization process.The distance correction factor is used at various stages of the localization process,which ultimately mitigates the error.We simulated the proposed algorithm using MATLAB and verified the accuracy of the algorithm.The simulation results are compared with some of the well-known existing algorithms in the literature.The results show that the proposed three-dimensional error-correctionbased algorithm performs better than existing algorithms.展开更多
Localization technology is an important support technology for WSN(Wireless Sensor Networks). The centroid algorithm is a typical range-free localization algorithm, which possesses the advantages such as simple locali...Localization technology is an important support technology for WSN(Wireless Sensor Networks). The centroid algorithm is a typical range-free localization algorithm, which possesses the advantages such as simple localization principle and easy realization. However, susceptible to be influenced by the density of anchor node and uniformity of deployment, its localization accuracy is not high. We study localization principal and error source of the centroid algorithm. Meanwhile, aim to resolve the problem of low localization accuracy, we proposes a new double-radius localization algorithm, which makes WSN node launch periodically two rounded communications area with different radius to enable localization region to achieve the second partition, thus there are some small overlapping regions which can narrow effectively localization range of unknown node. Besides, partition judgment mechanism is proposed to ascertain the area of unknown node, and then the localization of small regions is realized by the centroid algorithm. Simulation results show that the algorithm without adding additional hardware and anchor nodes but increases effectively localization accuracy and reduces the dependence on anchor node.展开更多
基金the VNUHCM-University of Information Technology’s Scientific Research Support Fund.
文摘Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios.
基金supported by Fundamental Research Funds of Jilin University(No.SXGJQY2017-9,No.2017TD-19)the National Natural Science Foundation of China(No.61771219)
文摘DV-Hop localization algorithm has greater localization error which estimates distance from an unknown node to the different anchor nodes by using estimated average size of a hop to achieve the location of the unknown node.So an improved DV-Hop localization algorithm based on correctional average size of a hop,HDCDV-Hop algorithm,is proposed.The improved algorithm corrects the estimated distance between the unknown node and different anchor nodes based on fractional hop count information and relatively accurate coordinates of the anchor nodes information,and it uses the improved Differential Evolution algorithm to get the estimate location of unknown nodes so as to further reduce the localization error.Simulation results show that our proposed algorithm have lower localization error and higher localization accuracy compared with the original DV-Hop algorithm and other classical improved algorithms.
基金supported by National Natural Science Foundation of China (Nos. U1806201, 61671261)Key Research and Development Program of Shandong Province (No. 2016GGX101007)+1 种基金China Postdoctoral Science Foundation (No. 2017T100490)University Science and Technology Planning Project of Shandong Province (Nos. J17KA058, J17KB154)
文摘At present, most underwater positioning algorithms improve the positioning accuracy by increasing the number of anchor nodes which resulting in the increasing energy consumption. To solve this problem, the paper proposes a localization algorithm assisted by mobile anchor node and based on region determination(LMRD), which not only improves the positioning accuracy of nodes positioning but also reduces the energy consumption. This algorithm is divided into two stages: region determination stage and location positioning stage. In the region determination stage, the target region is divided into several sub-regions by the region division strategy with the smallest overlap rate which can reduce the number of virtual anchor nodes and lock the target node to a sub-region, and then through the planning of mobile nodes to optimize the travel path, reduce the moving distance, and reduce system energy consumption. In the location positioning stage, the target node location can be calculated using the HILBERT path planning and trilateration. The simulation results show that the proposed algorithm can improve the positioning accuracy when the energy consumption is reduced.
基金supported by the National Natural Science Foundation of China (60802043)the National Basic Research Program of China(973 Program) (2010CB327900)
文摘Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration when using these approaches.First,the algorithm is apt to be influenced by illumination.Second,algorithm should have less computational complexity.Third,the depth information of images needs to be estimated without other sensors.This paper investigates a famous local invariant feature named speeded up robust feature(SURF),and proposes a highspeed and robust image registration and localization algorithm based on it.With supports from feature tracking and pose estimation methods,the proposed algorithm can compute camera poses under different conditions of scale,viewpoint and rotation so as to precisely localize object's position.At last,the study makes registration experiment by scale invariant feature transform(SIFT),SURF and the proposed algorithm,and designs a method to evaluate their performances.Furthermore,this study makes object retrieval test on remote sensing video.For there is big deformation on remote sensing frames,the registration algorithm absorbs the Kanade-Lucas-Tomasi(KLT) 3-D coplanar calibration feature tracker methods,which can localize interesting targets precisely and efficiently.The experimental results prove that the proposed method has a higher localization speed and lower localization error rate than traditional visual simultaneous localization and mapping(vSLAM) in a period of time.
文摘Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and underground parking, the accuracy of GPS and even AGPS will be greatly reduced. Since Indoor localization requests higher accuracy, using GPS or AGPS for indoor localization is not feasible in the current view. RSSI-based trilateral localization algorithm, due to its low cost, no additional hardware support, and easy-understanding, it becomes the mainstream localization algorithm in wireless sensor networks. With the development of wireless sensor networks and smart devices, the number of WIFI access point in these buildings is increasing, as long as a mobile smart device can detect three or three more known WIFI hotspots’ positions, it would be relatively easy to realize self-localization (Usually WIFI access points locations are fixed). The key problem is that the RSSI value is relatively vulnerable to the influence of the physical environment, causing large calculation error in RSSI-based localization algorithm. The paper proposes an improved RSSI-based algorithm, the experimental results show that compared with original RSSI-based localization algorithms the algorithm improves the localization accuracy and reduces the deviation.
文摘As much as accurate or precise position estimation is always desirable, coarse accuracy due to sensor node localization is often sufficient. For such level of accuracy, Range-free localization techniques are being explored as low cost alternatives to range based localization techniques. To manage cost, few location aware nodes, called anchors are deployed in the wireless sensor environment. It is from these anchors that all other free nodes are expected to estimate their own positions. This paper therefore, takes a look at some of the foremost Range-free localization algorithms, detailing their limitations, with a view to proposing a modified form of Centroid Localization Algorithm called Reach Centroid Localization Algorithm. The algorithm employs a form of anchor nodes position validation mechanism by looking at the consistency in the quality of Received Signal Strength. Each anchor within the vicinity of a free node seeks to validate the actual position or proximity of other anchors within its vicinity using received signal strength. This process mitigates multipath effects of radio waves, particularly in an enclosed environment, and consequently limits localization estimation errors and uncertainties. Centroid Localization Algorithm is then used to estimate the location of a node using the anchors selected through the validation mechanism. Our approach to localization becomes more significant, particularly in indoor environments, where radio signal signatures are inconsistent or outrightly unreliable. Simulated results show a significant improvement in localization accuracy when compared with the original Centroid Localization Algorithm, Approximate Point in Triangulation and DV-Hop.
基金This work was supported by the Postdoctoral Fund of FDCT,Macao(Grant No.0003/2021/APD).Any opinions,findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsor.
文摘In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account.
基金supported by the National Natural Science Foundation of China (Grant No. 51677065)
文摘Wise healthcare is a typical application of wireless sensor network(WSN), which uses sensors to monitor the physiological state of nursing targets and locate their position in case of an emergency situation. The location of targets need to be determined and reported to the control center,and this leads to the localization problem. While localization in healthcare field demands high accuracy and regional adaptability, the information processing mechanism of human thinking has been introduced,which includes knowledge accumulation, knowledge fusion and knowledge expansion. Furthermore, a fuzzy decision based localization approach is proposed. Received signal strength(RSS) at references points are obtained and processed as position relationship indicators, using fuzzy set theory in the knowledge accumulation stage; after that, optimize degree of membership corresponding to each anchor nodes in different environments during knowledge fusion; the matching degree of reference points is further calculated and sorted in decision-making, and the coordinates of several points with the highest matching degree are utilized to estimate the location of unknown nodes while knowledge expansion. Simulation results show that the proposed algorithm get better accuracy performance compared to several traditional algorithms under different typical occasions.
基金Projects(60234030 60404021) supported by the National Natural Science Foundation of China
文摘Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms.
文摘In this paper, the self-localization problem is studied. It is one of the key technologies in wireless sensor networks (WSNs). And five localization algorithms: Centroid algorithm, Amorphous algorithm, DV-hop algorithm, APIT algorithm and Bounding Box algorithm are discussed. Simulation of those five localization algorithms is done by MATLAB. The simulation results show that the positioning error of Amorphous algorithm is the minimum. Considering economy and localization accuracy, the Amorphous algorithm can achieve the best localization performance under certain conditions.
基金Project(61301181) supported by the National Natural Science Foundation of China
文摘In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.
基金performed in the Project "The Research of Cluster Structure Based Underwater Acoustic Communication Network Topology Algorithm"supported by National Natural Science Foundation of China(No.61101164)
文摘Underwater sensor network can achieve the unmanned environmental monitoring and military monitoring missions.Underwater acoustic sensor node cannot rely on the GPS to position itself,and the traditional indirect positioning methods used in Ad Hoc networks are not fully applicable to the localization of underwater acoustic sensor networks.In this paper,we introduce an improved underwater acoustic network localization algorithm.The algorithm processes the raw data before localization calculation to enhance the tolerance of random noise.We reduce the redundancy of the calculation results by using a more accurate basic algorithm and an adjusted calculation strategy.The improved algorithm is more suitable for the underwater acoustic sensor network positioning.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61101122)the National High Technology Research and Development Program of China(Grant No.2012AA120802)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2012ZX03004-003)
文摘For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2007AA809502C) National Natural Science Foundation of China (50979093) Program for New Century Excellent Talents in University (NCET-06-0877)
基金Supported by "973" National Fundamental Research Program (51332)
文摘Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each subset of variables, where optimization of configuration variables is simplified as a linear least-squares problem (LSP). Convergence of current symmetric localization algorithms is discussed firstly. It is shown that simply taking the solution of the LSP as start of the next iteration may result in divergence or incorrect convergence. Therefore in our enhanced algorithms, line search is performed along the solution of the LSP in order to find a better point reducing the value of objective function. We choose this point as start of the next iteration. Better convergence is verified by numerical simulation. Besides, imposing boundary constraints on the LSP proves to be another efficient way.
文摘Combined with naval vessel practical antisubmarine equipment of towed linear array sonar,a mathematical model of naval vessel localization for submarine based on bearing measurement was built,and localization algorithm was given to solve submarine movement parameters.Localizaiton errors were analyzed.Based on localization model and algorithm,simulations were done to study the effect of factors such as initial distance between submarine and the naval vessel,submarine initial bearing angle measured by the naval vessel and submarine course on localization performance,and then simulation results were given and analyzed.The results have practical value to instruct real antisubmarine.Simulation results show that different target movement situations have great influence on sonar detection and localization performance,so the reasonable choice of sonar position and detection bearing according to the target movement situation can improve sonar detection and localization performance to some degree.
文摘This paper present a new method based on Chaos Genetic Algorithm (CGA) to localize the human iris in a given image. First, the iris image is preprocessed to estimate the range of the iris localization, and then CGA is used to extract the boundary of the ~iris . Simulation results show that the proposed algorithms is efficient and robust, and can achieve sub pixel precision. Because Genetic Algorithms (GAs) can search in a large space, the algorithm does not need accurate estimation of iris center for subsequent localization, and hence can lower the requirement for original iris image processing. On this point, the present localization algirithm is superior to Daugman's algorithm.
基金the Research Grant of Kwangwoon University in 2020.
文摘The Internet of Things(IoT)is envisioned as a network of various wireless sensor nodes communicating with each other to offer state-of-the-art solutions to real-time problems.These networks of wireless sensors monitor the physical environment and report the collected data to the base station,allowing for smarter decisions.Localization in wireless sensor networks is to localize a sensor node in a two-dimensional plane.However,in some application areas,such as various surveillances,underwater monitoring systems,and various environmental monitoring applications,wireless sensors are deployed in a three-dimensional plane.Recently,localization-based applications have emerged as one of the most promising services related to IoT.In this paper,we propose a novel distributed range-free algorithm for node localization in wireless sensor networks.The proposed three-dimensional hop localization algorithm is based on the distance error correction factor.In this algorithm,the error decreases with the localization process.The distance correction factor is used at various stages of the localization process,which ultimately mitigates the error.We simulated the proposed algorithm using MATLAB and verified the accuracy of the algorithm.The simulation results are compared with some of the well-known existing algorithms in the literature.The results show that the proposed three-dimensional error-correctionbased algorithm performs better than existing algorithms.
文摘Localization technology is an important support technology for WSN(Wireless Sensor Networks). The centroid algorithm is a typical range-free localization algorithm, which possesses the advantages such as simple localization principle and easy realization. However, susceptible to be influenced by the density of anchor node and uniformity of deployment, its localization accuracy is not high. We study localization principal and error source of the centroid algorithm. Meanwhile, aim to resolve the problem of low localization accuracy, we proposes a new double-radius localization algorithm, which makes WSN node launch periodically two rounded communications area with different radius to enable localization region to achieve the second partition, thus there are some small overlapping regions which can narrow effectively localization range of unknown node. Besides, partition judgment mechanism is proposed to ascertain the area of unknown node, and then the localization of small regions is realized by the centroid algorithm. Simulation results show that the algorithm without adding additional hardware and anchor nodes but increases effectively localization accuracy and reduces the dependence on anchor node.