Common mycorrhizal networks(CMNs)that connect individual plants of the same or different species together play important roles in nutrient and signal transportation,and plant community organization.However,about 10%of...Common mycorrhizal networks(CMNs)that connect individual plants of the same or different species together play important roles in nutrient and signal transportation,and plant community organization.However,about 10%of land plants are non-mycorrhizal species with roots that do not form any wellrecognized types of mycorrhizas;and each mycorrhizal fungus can only colonize a limited number of plant species,resulting in numerous non-host plants that could not establish typical mycorrhizal symbiosis with a specific mycorrhizal fungus.If and how non-mycorrhizal or non-host plants are able to involve in CMNs remains unclear.Here we summarize studies focusing on mycorrhizal-mediated host and non-host plant interaction.Evidence has showed that some host-supported both arbuscular mycorrhizal(AM)and ectomycorrhizal(EM)hyphae can access to non-host plant roots without forming typical mycorrhizal structures,while such non-typical mycorrhizal colonization often inhibits the growth but enhances the induced system resistance of non-host plants.Meanwhile,the host growth is also differentially affected,depending on plant and fungi species.Molecular analyses suggested that the AMF colonization to non-hosts is different from pathogenic and endophytic fungi colonization,and the hyphae in non-host roots may be alive and have some unknown functions.Thus we propose that non-host plants are also important CMNs players.Using non-mycorrhizal model species Arabidopsis,tripartite culture system and new technologies such as nanoscale secondary ion mass spectrometry and multiomics,to study nutrient and signal transportation between host and non-host plants via CMNs may provide new insights into the mechanisms underlying benefits of intercropping and agro-forestry systems,as well as plant community establishment and stability.展开更多
基金This study was grants from Yunnan High Level Talent Introduction Plan,Kunming Institute of Botany(Y9627111K1)Natural Sciences Foundation of China(31901204).
文摘Common mycorrhizal networks(CMNs)that connect individual plants of the same or different species together play important roles in nutrient and signal transportation,and plant community organization.However,about 10%of land plants are non-mycorrhizal species with roots that do not form any wellrecognized types of mycorrhizas;and each mycorrhizal fungus can only colonize a limited number of plant species,resulting in numerous non-host plants that could not establish typical mycorrhizal symbiosis with a specific mycorrhizal fungus.If and how non-mycorrhizal or non-host plants are able to involve in CMNs remains unclear.Here we summarize studies focusing on mycorrhizal-mediated host and non-host plant interaction.Evidence has showed that some host-supported both arbuscular mycorrhizal(AM)and ectomycorrhizal(EM)hyphae can access to non-host plant roots without forming typical mycorrhizal structures,while such non-typical mycorrhizal colonization often inhibits the growth but enhances the induced system resistance of non-host plants.Meanwhile,the host growth is also differentially affected,depending on plant and fungi species.Molecular analyses suggested that the AMF colonization to non-hosts is different from pathogenic and endophytic fungi colonization,and the hyphae in non-host roots may be alive and have some unknown functions.Thus we propose that non-host plants are also important CMNs players.Using non-mycorrhizal model species Arabidopsis,tripartite culture system and new technologies such as nanoscale secondary ion mass spectrometry and multiomics,to study nutrient and signal transportation between host and non-host plants via CMNs may provide new insights into the mechanisms underlying benefits of intercropping and agro-forestry systems,as well as plant community establishment and stability.