One potential solution to the problems of energy storage and conversion is the use of reversible protonic ceramic electrochemical cells(R-PCEC),which are based on the solid oxide fuel cell(SOFC)technology and offer a ...One potential solution to the problems of energy storage and conversion is the use of reversible protonic ceramic electrochemical cells(R-PCEC),which are based on the solid oxide fuel cell(SOFC)technology and offer a flexible route to the generation of renewable fuels.However,the R-PCEC development faces a range of significant challenges,including slow oxygen reaction kinetics,inadequate durability,and poor round-trip efficiency resulting from the inadequacy of an air electrode.To address these issues,we report novel B-sites doped Pr_(0.5)Ba_(0.5)Co_(0.7)Fe_(0.3)O_(3−δ)(PBCF)with varying amounts of Sn as the air electrode for R-PCEC to further enhance electrochemical performance at lower temperatures.At 600℃,R-PCEC with an air electrode consisting of Pr_(0.5)Ba_(0.5)Co_(0.7)Fe_(0.25)Sn_(0.05)O_(3+δ)has achieved peak power density of 1.12 W∙cm^(−2) in the fuel cell mode and current density of 1.79 A∙cm^(−2) in the electrolysis mode at a voltage of 1.3 V.Moreover,R-PCECs have shown good stability in the electrolysis mode of 100 h.This study presents a practical method for developing durable high-performance air electrodes for R-PCECs.展开更多
Subject Code:A04With the financial support from the National Natural Science Foundation of China,a research team led by Associate Professor Yu Pu(于浦)at the Department of Physics,Tsinghua University recently publishe...Subject Code:A04With the financial support from the National Natural Science Foundation of China,a research team led by Associate Professor Yu Pu(于浦)at the Department of Physics,Tsinghua University recently published their seminal work in Nature(2017,546:124—128).The work,titled“Electric-field control展开更多
With financial support from the National Natural Science Foundation of China,a research team led by Associate Professor Yu Pu(于浦)at the Department of Physics in Tsinghua University published their seminal work recen...With financial support from the National Natural Science Foundation of China,a research team led by Associate Professor Yu Pu(于浦)at the Department of Physics in Tsinghua University published their seminal work recently in the prestigious journal Nature(2017,546:124-128).The work。展开更多
La(0.4)Sr(0.6)Co(0.2)Fe(0.7)Nb(0.1)O(3-δ)(LSCFN)was applied as both anode and cathode for symmetrical solid oxide fuel cells(SSOFCs)with zirconia based electrolyte.The cell with LSCFN electrode was fa...La(0.4)Sr(0.6)Co(0.2)Fe(0.7)Nb(0.1)O(3-δ)(LSCFN)was applied as both anode and cathode for symmetrical solid oxide fuel cells(SSOFCs)with zirconia based electrolyte.The cell with LSCFN electrode was fabricated by tape-casting and screen printing.Fabrication process was optimized firstly by comparing co-sintering and separate-sintering of electrode and electrolyte.To further improve the LSCFN electrode properties,oxygen ionic conductor of Gd(0.1)Ce(0.9)O(2-δ)(GDC)was added into the LSCFN electrode.The preferred composition of LSCFN-GDC composite electrode was found to be 1:1 in weight ratio with polarization resistance of 0.16Ωcm^2at 800~℃.The maximum power densities of LSCFN-GDC||GDC/YSZ/GDC||LSCFN-GDC tested in H2and CH4with 3%H2O were 395 m W cm^(-2)and 124 m W cm^(-2)at 850~?C,respectively,which were much higher than that of LSCFN||GDC/YSZ/GDC||LSCFN cells at same condition,possibly due to the extension of the triple phase boundary induced by the addition of GDC.The cell showed reasonable stability using H2and CH4with 3%H2O as fuels and no significant power output degradation was observed after total 200 h operation.展开更多
基金supported by the National Natural Science Foundation of China(No.11875164)Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(No.18KJA430017)U.S.National Science Foundation(No.1832809).
文摘One potential solution to the problems of energy storage and conversion is the use of reversible protonic ceramic electrochemical cells(R-PCEC),which are based on the solid oxide fuel cell(SOFC)technology and offer a flexible route to the generation of renewable fuels.However,the R-PCEC development faces a range of significant challenges,including slow oxygen reaction kinetics,inadequate durability,and poor round-trip efficiency resulting from the inadequacy of an air electrode.To address these issues,we report novel B-sites doped Pr_(0.5)Ba_(0.5)Co_(0.7)Fe_(0.3)O_(3−δ)(PBCF)with varying amounts of Sn as the air electrode for R-PCEC to further enhance electrochemical performance at lower temperatures.At 600℃,R-PCEC with an air electrode consisting of Pr_(0.5)Ba_(0.5)Co_(0.7)Fe_(0.25)Sn_(0.05)O_(3+δ)has achieved peak power density of 1.12 W∙cm^(−2) in the fuel cell mode and current density of 1.79 A∙cm^(−2) in the electrolysis mode at a voltage of 1.3 V.Moreover,R-PCECs have shown good stability in the electrolysis mode of 100 h.This study presents a practical method for developing durable high-performance air electrodes for R-PCECs.
文摘Subject Code:A04With the financial support from the National Natural Science Foundation of China,a research team led by Associate Professor Yu Pu(于浦)at the Department of Physics,Tsinghua University recently published their seminal work in Nature(2017,546:124—128).The work,titled“Electric-field control
文摘With financial support from the National Natural Science Foundation of China,a research team led by Associate Professor Yu Pu(于浦)at the Department of Physics in Tsinghua University published their seminal work recently in the prestigious journal Nature(2017,546:124-128).The work。
基金supported by the National Natural Science Foundation of China (No. 51402355)Natural Science Foundation of Beijing Project (Nos. LJ201531 and 2154056)+1 种基金Shanxi Province Project (No. MD2014-08)Guangdong Project (No. 201460720100025)
文摘La(0.4)Sr(0.6)Co(0.2)Fe(0.7)Nb(0.1)O(3-δ)(LSCFN)was applied as both anode and cathode for symmetrical solid oxide fuel cells(SSOFCs)with zirconia based electrolyte.The cell with LSCFN electrode was fabricated by tape-casting and screen printing.Fabrication process was optimized firstly by comparing co-sintering and separate-sintering of electrode and electrolyte.To further improve the LSCFN electrode properties,oxygen ionic conductor of Gd(0.1)Ce(0.9)O(2-δ)(GDC)was added into the LSCFN electrode.The preferred composition of LSCFN-GDC composite electrode was found to be 1:1 in weight ratio with polarization resistance of 0.16Ωcm^2at 800~℃.The maximum power densities of LSCFN-GDC||GDC/YSZ/GDC||LSCFN-GDC tested in H2and CH4with 3%H2O were 395 m W cm^(-2)and 124 m W cm^(-2)at 850~?C,respectively,which were much higher than that of LSCFN||GDC/YSZ/GDC||LSCFN cells at same condition,possibly due to the extension of the triple phase boundary induced by the addition of GDC.The cell showed reasonable stability using H2and CH4with 3%H2O as fuels and no significant power output degradation was observed after total 200 h operation.