Chemo-photothermal treatment is one of the most efficient strategies for cancer therapy.However,traditional drug carriers without near-infrared absorption capacity need to be loaded with materials behaving phototherma...Chemo-photothermal treatment is one of the most efficient strategies for cancer therapy.However,traditional drug carriers without near-infrared absorption capacity need to be loaded with materials behaving photothermal properties,as it results in complicated synthesis process,inefficient photothermal effects and hindered NIR-mediated drug release.Herein we report a facile synthesis of a polyethylene glycol(PEG)linked liposome(PEG-liposomes)coated doxorubicin(DOX)-loaded ordered mesoporous carbon(OMC)nanocomponents(PEG-LIP@OMC/DOX)by simply sonicating DOX and OMC in PEG-liposomes suspensions.The as-obtained PEG-LIP@OMC/DOX exhibits a nanoscale size(600±15 nm),a negative surface potential(-36.70 mV),high drug loading(131.590 mg/g OMC),and excellent photothermal properties.The PEG-LIP@OMC/DOX can deliver loaded DOX to human MCF-7 breast cancer cells(MCF-7)and the cell toxicity viability shows that DOX unloaded PEG-LIP@OMC has no cytotoxicity,confirming the PEG-LIP@OMC itself has excellent biocompatibility.The NIR-triggered release studies demonstrate that this NIR-responsive drug delivery system enables on-demand drug release.Furthermore,cell viability results using human MCF-7 cells demonstrated that the combination of NIR-based hyperthermal therapy and triggered chemothe rapy can provide higher therapeutic efficacy than re spective monothe rapies.With these excellent features,we believe that this phospholipid coating based multifunctional delivery system strategy should promote the application of OMC in nanomedical applications.展开更多
In a series of publications a special, tetraploid diplochromosomal division system to only two types of progeny cells (4n/4C/G1 and 2n/4C para-diploid) has been suggested to initiate preneoplasia that can lead to a ca...In a series of publications a special, tetraploid diplochromosomal division system to only two types of progeny cells (4n/4C/G1 and 2n/4C para-diploid) has been suggested to initiate preneoplasia that can lead to a cancerous pathway. Colorectal and other preneoplasia are known with the pathogenic, histological phases of hyperplasia to arrested adenoma/nevi that can give rise to dysplasia with high risk for cancer development. The present theme is to find solutions to tumorigenic unsolved, biological problems (queries), explainable from the tetraploid 4n-system, which would support its operation in the cancerous pathway. Presently admitted, the mutational sequencing of the cancer genome (cancer chemistry) cannot discover so-called “dark matter”, which herein is considered to be the queries. The solutions from the 4n-system were largely supported by mutated APC-induced same type of tetraploidy from the mitotic slippage process. But importantly, these behaviors and consequences could be linked to the beginning of hyperplastic lesions and their development to the arrest-phase of preneoplasia (polyps/nevi). Function of HFSMs is mostly unknown, but for Barrett’s esophagus, HFSMs (p53, p16ink4a) caused inactivation of the Rb gene, leading to dysplasia with 4n, aneuploid, abnormal cell cycles. In vitro models of the 4n-system from normal human cells recapitulated preneoplasia-like histopathological changes. It was speculated that the “cancer-crucial” step to dysplasia could be therapy-vulnerable to CRISPR-caspase editing, and perhaps antibody treatment. Additionally, the 4n-system with spontaneous cell-behaviors together with preneoplasia molecular data promises construction of a more truthful cancer-paradigm than from sequencing data alone.展开更多
A spatiotemporally dynamic therapy(SDT)is proposed as a powerful therapeutic modality that provides spatially dynamic responses of drug-carriers for adapting to the wound microenvironment.Herein,dynamic chitosan-poly(...A spatiotemporally dynamic therapy(SDT)is proposed as a powerful therapeutic modality that provides spatially dynamic responses of drug-carriers for adapting to the wound microenvironment.Herein,dynamic chitosan-poly(ethylene glycol)(CP)Schiff-base linkages are employed to perform SDT by directly converting a liquid drug Kangfuxin(KFX)into a gel formation.The obtained KFX-CP drug-gel with shape-adaptive property is used to treat a representative oral mucositis(OM)model in a spatiotemporally dynamic manner.The KFX-CP drug-gel creates an instructive microenvironment to regulate signaling biomolecules and endogenous cells behavior,thereby promoting OM healing by the rule of dynamically adjusting shape to fit the irregular OM regions first,and then provides space for tissue regeneration,over KFX potion control and the general hydrogel group of CP hydrogel and KFX-F127.Most interestingly,the regenerated tissue has ordered structure like healthy tissue.Therefore,the SDT provides a new approach for the design of next generation of wound dressing and tissue engineering materials.展开更多
基金the National Natural Science Foundation of China(Nos.21735002,21521063,21675046,21874035,21806186 and 21775036)the Natural Science Foundation of Hunan Province,China(No.2018JJ2033)the Key Point Research and Invention Program of Hunan Province,China(No.2017DK2011)。
文摘Chemo-photothermal treatment is one of the most efficient strategies for cancer therapy.However,traditional drug carriers without near-infrared absorption capacity need to be loaded with materials behaving photothermal properties,as it results in complicated synthesis process,inefficient photothermal effects and hindered NIR-mediated drug release.Herein we report a facile synthesis of a polyethylene glycol(PEG)linked liposome(PEG-liposomes)coated doxorubicin(DOX)-loaded ordered mesoporous carbon(OMC)nanocomponents(PEG-LIP@OMC/DOX)by simply sonicating DOX and OMC in PEG-liposomes suspensions.The as-obtained PEG-LIP@OMC/DOX exhibits a nanoscale size(600±15 nm),a negative surface potential(-36.70 mV),high drug loading(131.590 mg/g OMC),and excellent photothermal properties.The PEG-LIP@OMC/DOX can deliver loaded DOX to human MCF-7 breast cancer cells(MCF-7)and the cell toxicity viability shows that DOX unloaded PEG-LIP@OMC has no cytotoxicity,confirming the PEG-LIP@OMC itself has excellent biocompatibility.The NIR-triggered release studies demonstrate that this NIR-responsive drug delivery system enables on-demand drug release.Furthermore,cell viability results using human MCF-7 cells demonstrated that the combination of NIR-based hyperthermal therapy and triggered chemothe rapy can provide higher therapeutic efficacy than re spective monothe rapies.With these excellent features,we believe that this phospholipid coating based multifunctional delivery system strategy should promote the application of OMC in nanomedical applications.
文摘In a series of publications a special, tetraploid diplochromosomal division system to only two types of progeny cells (4n/4C/G1 and 2n/4C para-diploid) has been suggested to initiate preneoplasia that can lead to a cancerous pathway. Colorectal and other preneoplasia are known with the pathogenic, histological phases of hyperplasia to arrested adenoma/nevi that can give rise to dysplasia with high risk for cancer development. The present theme is to find solutions to tumorigenic unsolved, biological problems (queries), explainable from the tetraploid 4n-system, which would support its operation in the cancerous pathway. Presently admitted, the mutational sequencing of the cancer genome (cancer chemistry) cannot discover so-called “dark matter”, which herein is considered to be the queries. The solutions from the 4n-system were largely supported by mutated APC-induced same type of tetraploidy from the mitotic slippage process. But importantly, these behaviors and consequences could be linked to the beginning of hyperplastic lesions and their development to the arrest-phase of preneoplasia (polyps/nevi). Function of HFSMs is mostly unknown, but for Barrett’s esophagus, HFSMs (p53, p16ink4a) caused inactivation of the Rb gene, leading to dysplasia with 4n, aneuploid, abnormal cell cycles. In vitro models of the 4n-system from normal human cells recapitulated preneoplasia-like histopathological changes. It was speculated that the “cancer-crucial” step to dysplasia could be therapy-vulnerable to CRISPR-caspase editing, and perhaps antibody treatment. Additionally, the 4n-system with spontaneous cell-behaviors together with preneoplasia molecular data promises construction of a more truthful cancer-paradigm than from sequencing data alone.
基金supported by Key Program of Beijing Natural Science Foundation(Z200025)National Natural Science Foundation of China(52003161)+3 种基金National Mega-project for Innovative Drugs(2019ZX09721001-007-002)Shenzhen Science and Technology Project(JCYJ20180507183842516)Fundamental Research Funds for the Central Universities(BHYC1705B,PYBZ1709)Research Projects on Biomedical Transformation of China-Japan Friendship Hospital(PYBZ1806).
文摘A spatiotemporally dynamic therapy(SDT)is proposed as a powerful therapeutic modality that provides spatially dynamic responses of drug-carriers for adapting to the wound microenvironment.Herein,dynamic chitosan-poly(ethylene glycol)(CP)Schiff-base linkages are employed to perform SDT by directly converting a liquid drug Kangfuxin(KFX)into a gel formation.The obtained KFX-CP drug-gel with shape-adaptive property is used to treat a representative oral mucositis(OM)model in a spatiotemporally dynamic manner.The KFX-CP drug-gel creates an instructive microenvironment to regulate signaling biomolecules and endogenous cells behavior,thereby promoting OM healing by the rule of dynamically adjusting shape to fit the irregular OM regions first,and then provides space for tissue regeneration,over KFX potion control and the general hydrogel group of CP hydrogel and KFX-F127.Most interestingly,the regenerated tissue has ordered structure like healthy tissue.Therefore,the SDT provides a new approach for the design of next generation of wound dressing and tissue engineering materials.