Broadband and omnidirectional antireflection coating is generally an effective way to improve solar cell efficiency, because the destructive interference between the reflected and incident light can maximize the light...Broadband and omnidirectional antireflection coating is generally an effective way to improve solar cell efficiency, because the destructive interference between the reflected and incident light can maximize the light transmission into the absorption layer. In this paper, we report the incident quantum efficiency ηin, not incident energy or power, as the evaluation function by the ant colony algorithm optimization method, which is a swarm-based optimization method. Also, SPCTRL2 is proposed to be incorporated for accurate optimization because the solar irradiance on a receiver plane is dependent on position, season, and time. Cities of Quito, Beijing and Moscow are selected for two-and three-layer antireflective coating optimization over λ = [300,1100] nm and θ = [0°, 90°]. The ηin increases by 0.26%, 1.37% and 4.24% for the above 3 cities, respectively, compared with that calculated by other rigorous optimization algorithms methods, which is further verified by the effect of position and time dependent solar spectrum on the antireflective coating design.展开更多
We suggest a design method of graded-refractive-index (GRIN) antireflection (AR) coating for s-polarized or p- polarized light at off-normal incidence. The spectrum characteristic of the designed antireflection co...We suggest a design method of graded-refractive-index (GRIN) antireflection (AR) coating for s-polarized or p- polarized light at off-normal incidence. The spectrum characteristic of the designed antireflection coating with a quintic effective refractive-index profile for a given state of polarization has been discussed. In addition, the genetic algorithm was used to optimize the refractive index profile of the GRIN antireflection for reducing the mean reflectance of s- and p-polarizations. The average reflectance loss was reduced to only 0.04% by applying optimized GRIN AR coatings onto BK7 glass over the wavelength range from 400 to 800 nm at the incident angle of θo = 70°.展开更多
The design and fabrication of graded-refractive-index (GRIN) antireflection (AR) coatings with wide-angle and broadband characteristics are demonstrated. The optimization of the graded-index profiles with a geneti...The design and fabrication of graded-refractive-index (GRIN) antireflection (AR) coatings with wide-angle and broadband characteristics are demonstrated. The optimization of the graded-index profiles with a genetic algorithm is used in the design of the GRIN AR coatings. The average reflectance over a wavelength range from 400 nm to 800 nm and angles of incidence from 0° to 80° could be reduced to only 0.1% by applying an optimized AR coating onto BK7 glass. The optimization of step-graded GRIN AR coating is then further investigated in detail. A two-layer AR coating was deposited by electron beam evaporation with glancing angle deposition technology, and the positional homogeneity was improved by depositing the film from two opposite directions. The microstructure of the AR coating was investigated by scanning electron microscopy, and the residual reflectances of the coating sample are in agreement with theoretical calculations. The optimized GRIN AR coatings are beneficial to increasing the efficiency of light utilization.展开更多
Frequency-doubled antireflection coatings simultaneously effective at 1064 nm and 532 nm were deposited on the lithium triborate (LiB3O5 or LBO) crystals using the electron beam evaporation method. Comparing with th...Frequency-doubled antireflection coatings simultaneously effective at 1064 nm and 532 nm were deposited on the lithium triborate (LiB3O5 or LBO) crystals using the electron beam evaporation method. Comparing with the sample without buffer layer, it is found that the adhesion of the sample with buffer layer of SiO2 between coating and LBO substrate is improved significantly from 137.4 mN to greater than 200 mN. And the laser-induced damage threshold is increased by 20% from 15.1 J/cm^2 to 18.6 J/cm^2. The strengthening mechanism of adhesion of the buffer layer of SiO2 is discussed by considering full plastic indentation and shear theory.展开更多
This paper reports that SiO2 is selected to fabricate broadband antireflection (AR) coatings on fused silica substrate by using glancing angle deposition and physical vapour deposition. Through accurate control of t...This paper reports that SiO2 is selected to fabricate broadband antireflection (AR) coatings on fused silica substrate by using glancing angle deposition and physical vapour deposition. Through accurate control of the graded index of the SiO2 layer, transmittance of thc graded broadband AR coating can achieve an average value of 98% across a spectral range of 300-1850 nm. Moreover, a laser-induced damage threshold measurement of the fabricated AR coating is performed by using a one-on-one protocol according to ISOl1254-1, resulting in an average damage threshold of 17.2 J/cm2.展开更多
Constipation is a common functional gastrointestinal disorder which has caused much discomfort affecting the quality of life. The prevalence of constipation in the general population is approximately 20%(1)Various kin...Constipation is a common functional gastrointestinal disorder which has caused much discomfort affecting the quality of life. The prevalence of constipation in the general population is approximately 20%(1)Various kinds of laxatives were introduced such as bulking agent, stool softener, stimulant, and osmotic agent (2)Fixed dose combination with bisacodyl as a stimulant and docusate sodium as a stool softener, Ducolax STM, was developed as enteric coated tablets targeting colon.展开更多
Electro-optical/infrared (EO/IR) sensors and photovoltaic power sources are being developed for a variety of defense and commercial applications. One of the critical technologies that will enhance both EO/IR sensor an...Electro-optical/infrared (EO/IR) sensors and photovoltaic power sources are being developed for a variety of defense and commercial applications. One of the critical technologies that will enhance both EO/IR sensor and photovoltaic module performance is the development of high quality nanostructure-based antireflection coatings. In this paper, we review our work on advanced antireflection structures that have been designed by using a genetic algorithm and fabricated by using oblique angle deposition. The antireflection coatings are designed for the wavelength range of 250 nm to 2500 nm and an incidence angle between 00 and 400. These nanostructured antireflection coatings are shown to enhance the optical transmission through transparent windows over a wide band of interest and minimize broadband reflection losses to less than one percent, a substantial improvement over conventional thin-film antireflection coating technologies.展开更多
Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas con...Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas content and low permeability have become increasingly prevalent.While controllable shockwave(CSW)technology has proven effective in enhancing CBM in laboratory settings,there is a lack of reports on its field applications in soft and low-permeability coal seams.This study establishes the governing equations for stress waves induced by CSW.Laplace numerical inversion was employed to analyse the dynamic response of the coal seam during CSW antireflection.Additionally,quantitative calculations were performed for the crushed zone,fracture zone,and effective CSW influence range,which guided the selection of field test parameters.The results of the field test unveiled a substantial improvement in the gas permeability coefficient,the average rate of pure methane flowrate,and the mean gas flowrate within a 10 m radius of the antireflection borehole.These enhancements were notable,showing increases of 3 times,13.72 times,and 11.48 times,respectively.Furthermore,the field test performed on the CSW antireflection gas extraction hole cluster demonstrated a noticeable improvement in CBM extraction.After antireflection,the maximum peak gas concentration and maximum peak pure methane flow reached 71.2%and 2.59 m^(3)/min,respectively.These findings will offer valuable guidance for the application of CSW antireflection technology in soft and low-permeability coal seams.展开更多
基金supported by the National Key Research and Development of China (No. 2017YFF0104801)the National Natural Science Foundation of China (Nos. 61675046, 61804012)the Open Fund of IPOC (No. IPOC2017B011)
文摘Broadband and omnidirectional antireflection coating is generally an effective way to improve solar cell efficiency, because the destructive interference between the reflected and incident light can maximize the light transmission into the absorption layer. In this paper, we report the incident quantum efficiency ηin, not incident energy or power, as the evaluation function by the ant colony algorithm optimization method, which is a swarm-based optimization method. Also, SPCTRL2 is proposed to be incorporated for accurate optimization because the solar irradiance on a receiver plane is dependent on position, season, and time. Cities of Quito, Beijing and Moscow are selected for two-and three-layer antireflective coating optimization over λ = [300,1100] nm and θ = [0°, 90°]. The ηin increases by 0.26%, 1.37% and 4.24% for the above 3 cities, respectively, compared with that calculated by other rigorous optimization algorithms methods, which is further verified by the effect of position and time dependent solar spectrum on the antireflective coating design.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10704079 and 10976030)
文摘We suggest a design method of graded-refractive-index (GRIN) antireflection (AR) coating for s-polarized or p- polarized light at off-normal incidence. The spectrum characteristic of the designed antireflection coating with a quintic effective refractive-index profile for a given state of polarization has been discussed. In addition, the genetic algorithm was used to optimize the refractive index profile of the GRIN antireflection for reducing the mean reflectance of s- and p-polarizations. The average reflectance loss was reduced to only 0.04% by applying optimized GRIN AR coatings onto BK7 glass over the wavelength range from 400 to 800 nm at the incident angle of θo = 70°.
文摘The design and fabrication of graded-refractive-index (GRIN) antireflection (AR) coatings with wide-angle and broadband characteristics are demonstrated. The optimization of the graded-index profiles with a genetic algorithm is used in the design of the GRIN AR coatings. The average reflectance over a wavelength range from 400 nm to 800 nm and angles of incidence from 0° to 80° could be reduced to only 0.1% by applying an optimized AR coating onto BK7 glass. The optimization of step-graded GRIN AR coating is then further investigated in detail. A two-layer AR coating was deposited by electron beam evaporation with glancing angle deposition technology, and the positional homogeneity was improved by depositing the film from two opposite directions. The microstructure of the AR coating was investigated by scanning electron microscopy, and the residual reflectances of the coating sample are in agreement with theoretical calculations. The optimized GRIN AR coatings are beneficial to increasing the efficiency of light utilization.
基金Fundeded by the Doctorial Start-up Fund of the Department of Science and Technology of Liaoning Province(20081030)S&T Plan Project of the Educational Department of Liaoning Province(2008224)
文摘Frequency-doubled antireflection coatings simultaneously effective at 1064 nm and 532 nm were deposited on the lithium triborate (LiB3O5 or LBO) crystals using the electron beam evaporation method. Comparing with the sample without buffer layer, it is found that the adhesion of the sample with buffer layer of SiO2 between coating and LBO substrate is improved significantly from 137.4 mN to greater than 200 mN. And the laser-induced damage threshold is increased by 20% from 15.1 J/cm^2 to 18.6 J/cm^2. The strengthening mechanism of adhesion of the buffer layer of SiO2 is discussed by considering full plastic indentation and shear theory.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10804060)Higher Educational Science and Technology Program of Shandong Province of China (Grant No. J08LI05)
文摘This paper reports that SiO2 is selected to fabricate broadband antireflection (AR) coatings on fused silica substrate by using glancing angle deposition and physical vapour deposition. Through accurate control of the graded index of the SiO2 layer, transmittance of thc graded broadband AR coating can achieve an average value of 98% across a spectral range of 300-1850 nm. Moreover, a laser-induced damage threshold measurement of the fabricated AR coating is performed by using a one-on-one protocol according to ISOl1254-1, resulting in an average damage threshold of 17.2 J/cm2.
文摘Constipation is a common functional gastrointestinal disorder which has caused much discomfort affecting the quality of life. The prevalence of constipation in the general population is approximately 20%(1)Various kinds of laxatives were introduced such as bulking agent, stool softener, stimulant, and osmotic agent (2)Fixed dose combination with bisacodyl as a stimulant and docusate sodium as a stool softener, Ducolax STM, was developed as enteric coated tablets targeting colon.
文摘Electro-optical/infrared (EO/IR) sensors and photovoltaic power sources are being developed for a variety of defense and commercial applications. One of the critical technologies that will enhance both EO/IR sensor and photovoltaic module performance is the development of high quality nanostructure-based antireflection coatings. In this paper, we review our work on advanced antireflection structures that have been designed by using a genetic algorithm and fabricated by using oblique angle deposition. The antireflection coatings are designed for the wavelength range of 250 nm to 2500 nm and an incidence angle between 00 and 400. These nanostructured antireflection coatings are shown to enhance the optical transmission through transparent windows over a wide band of interest and minimize broadband reflection losses to less than one percent, a substantial improvement over conventional thin-film antireflection coating technologies.
基金supported by the National Natural Science Foundation of China(52074013,52374179)China Huaneng Group Science and Technology Project(HNKJ20-H87)+1 种基金Natural Science Foundation of Anhui Province(2208085ME125)Hefei Comprehensive National Science Center(21KZS216),which are gratefully appreciated.
文摘Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas content and low permeability have become increasingly prevalent.While controllable shockwave(CSW)technology has proven effective in enhancing CBM in laboratory settings,there is a lack of reports on its field applications in soft and low-permeability coal seams.This study establishes the governing equations for stress waves induced by CSW.Laplace numerical inversion was employed to analyse the dynamic response of the coal seam during CSW antireflection.Additionally,quantitative calculations were performed for the crushed zone,fracture zone,and effective CSW influence range,which guided the selection of field test parameters.The results of the field test unveiled a substantial improvement in the gas permeability coefficient,the average rate of pure methane flowrate,and the mean gas flowrate within a 10 m radius of the antireflection borehole.These enhancements were notable,showing increases of 3 times,13.72 times,and 11.48 times,respectively.Furthermore,the field test performed on the CSW antireflection gas extraction hole cluster demonstrated a noticeable improvement in CBM extraction.After antireflection,the maximum peak gas concentration and maximum peak pure methane flow reached 71.2%and 2.59 m^(3)/min,respectively.These findings will offer valuable guidance for the application of CSW antireflection technology in soft and low-permeability coal seams.