Using an exact solution of two-dimensional Poisson's equation in cylindrical coordinates,a new analytical model comprising electrostatic potential,electric field,threshold voltage and subthreshold current for halodop...Using an exact solution of two-dimensional Poisson's equation in cylindrical coordinates,a new analytical model comprising electrostatic potential,electric field,threshold voltage and subthreshold current for halodoped surrounding-gate MOSFETs is developed.It is found that a new analytical model exhibits higher accuracy than that based on parabolic potential approximation when the thickness of the silicon channel is much larger than that of the oxide.It is also revealed that moderate halo doping concentration,thin gate oxide thickness and small silicon channel radius are needed to improve the threshold voltage characteristics.The derived analytical model agrees well with a three-dimensional numerical device simulator ISE.展开更多
基金Project supported by the National Natural Science Foundation of China(No.61076101)
文摘Using an exact solution of two-dimensional Poisson's equation in cylindrical coordinates,a new analytical model comprising electrostatic potential,electric field,threshold voltage and subthreshold current for halodoped surrounding-gate MOSFETs is developed.It is found that a new analytical model exhibits higher accuracy than that based on parabolic potential approximation when the thickness of the silicon channel is much larger than that of the oxide.It is also revealed that moderate halo doping concentration,thin gate oxide thickness and small silicon channel radius are needed to improve the threshold voltage characteristics.The derived analytical model agrees well with a three-dimensional numerical device simulator ISE.