期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Nonlinear constitutive models of rock structural plane and their applications
1
作者 Wenlin Feng Shuangjian Niu +1 位作者 Chunsheng Qiao Dujian Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期790-806,共17页
Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this ... Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering. 展开更多
关键词 Structural plane Engineering stability ROUGHNESS Normal stress elasto-plastic constitutive model Discrete element method
下载PDF
Elasto-plastic constitutive model of aluminum alloy foam subjected to impact loading 被引量:9
2
作者 王志华 敬霖 赵隆茂 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期449-454,共6页
A multi-parameter nonlinear elasto-plastic constitutive model which can fully capture the three typical features of stress-strain response, linearity, plasticity-like stress plateau and densification phases was develo... A multi-parameter nonlinear elasto-plastic constitutive model which can fully capture the three typical features of stress-strain response, linearity, plasticity-like stress plateau and densification phases was developed. The functional expression of each parameter was determined using uniaxial compression tests for aluminum alloy foams. The parameters of the model can be systematically varied to describe the effect of relative density which may be responsible for the changes in yield stress and hardening-like or softening-like behavior at various strain rates. A comparison between model predictions and experimental results of the aluminum alloy foams was provided to validate the model. It was proved to be useful in the selection of the optimal-density and energy absorption foam for a specific application at impact events. 展开更多
关键词 elasto-plastic constitutive model metallic foam strain rate effect energy absorption
下载PDF
Modeling texture evolution during rolling process of AZ31 magnesium alloy with elasto-plastic self consistent model 被引量:4
3
作者 黄诗尧 张少睿 +1 位作者 李大永 彭颖红 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1348-1354,共7页
To gain a better understanding about texture evolution during rolling process of AZ31 alloy, polycrystalline plasticity model was implemented into the explicit FE package, ABAQUS/Explicit by writing a user subroutine ... To gain a better understanding about texture evolution during rolling process of AZ31 alloy, polycrystalline plasticity model was implemented into the explicit FE package, ABAQUS/Explicit by writing a user subroutine VUMAT. For each individual grain in the polycrystalline aggregate, the rate dependent model was adopted to calculate the plastic shear strain increment in combination with the Voce hardening law to describe the hardening response, the lattice reorientation caused by slip and twinning were calculated separately due to their different mechanisms. The elasto-plastic self consistent (EPSC) model was employed to relate the response of individual grain to the response of the polycrystalline aggregate. Rolling processes of AZ31 sheet and as-cast AZ31 alloy were simulated respectively. The predicted texture distributions are in aualitative a^reement with experimental results. 展开更多
关键词 AZ31 alloy texture rolling process elasto-plastic self consistent (EPSC) model
下载PDF
Slope analysis based on local strength reduction method and variable-modulus elasto-plastic model 被引量:4
4
作者 杨光华 钟志辉 +3 位作者 傅旭东 张玉成 温勇 张明飞 《Journal of Central South University》 SCIE EI CAS 2014年第5期2041-2050,共10页
Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).How... Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method. 展开更多
关键词 slope stability local strength reduction method variable-modulus elasto-plastic model in-situ test
下载PDF
Elasto-plastic constitutive modeling for granular materials 被引量:1
5
作者 彭芳乐 李建中 《Journal of Central South University of Technology》 EI 2004年第4期440-444,共5页
Based on the modified plastic strain energy approach, an elasto-plastic constitutive modeling for sand was proposed. The hardening function between the modified plastic strain energy and a stress parameter was present... Based on the modified plastic strain energy approach, an elasto-plastic constitutive modeling for sand was proposed. The hardening function between the modified plastic strain energy and a stress parameter was presented, which was independent of stress history and stress paths. The proposed model was related to an isotropically work-hardening and softening, non-associated and elasto-plastic material description. It is shown that the constitutive modeling, the inherent and stress system-induced cross-anisotropic elasticity is also considered. The constitutive model is capable of simulating the effects on the deformation characteristics of stress history and stress path, pressure level and anisotropic strength. 展开更多
关键词 SAND elasto-plastic model hardening function stresspath
下载PDF
An elasto-plastic and viscoplastic damage constitutive model for dilatancy and fracturing behavior of soft rock squeezing deformation 被引量:1
6
作者 HUANG Xing LIU Quan-sheng +3 位作者 BO Yin LIU Bin DING Zi-wei ZHANG Quan-tai 《Journal of Mountain Science》 SCIE CSCD 2022年第3期826-848,共23页
Soft rock squeezing deformation mainly consists of pre-peak damage-dilatancy and post-peak fracture-bulking at the excavation unloading instant,and creep-dilatancy caused by time-dependent damage and fracturing.Based ... Soft rock squeezing deformation mainly consists of pre-peak damage-dilatancy and post-peak fracture-bulking at the excavation unloading instant,and creep-dilatancy caused by time-dependent damage and fracturing.Based on the classic elastoplastic and Perzyna over-stress viscoplastic theories,as well as triaxial unloading confining pressure test and triaxial unloading creep test results,an elastoplastic and viscoplastic damage constitutive model is established for the short-and long-term dilatancy and fracturing behavior of soft rock squeezing deformation.Firstly,the criteria for each deformation and failure stage are expressed as a linear function of confining pressure.Secondly,the total damage evolution equation considering time-dependent damage is proposed,including the initial damage produced at the excavation instant,in which the damage variable increases exponentially with the lateral strain,and creep damage.Thirdly,a transient five-stages elasto-plastic constitutive equation for the short-term deformation after excavation that comprised of elasticity,pre-peak damage-dilatancy,post-peak brittle-drop,linear strain-softening,and residual perfectly-plastic regimes is developed based on incremental elasto-plastic theory and the nonassociated flow rule.Fourthly,regarding the timedependent properties of soft rock,based on the Perzyna viscoplastic over-stress theory,a viscoplastic damage model is set up to capture creep damage and dilatancy behavior.Viscoplastic strain is produced when the stress exceeds the initial static yield surface fs;the distance between the static yield surface fs and the dynamic yield surface fd determines the viscoplastic strain rate.Finally,the established constitutive model is numerically implemented and field applied to the-848 m belt conveyer haulage roadway of Huainan Panyidong Coal Mine.Laboratory test results and in-situ monitoring results validate the rationality of the established constitutive model.The presented model takes both the transient and time-dependent damage and fracturing into consideration. 展开更多
关键词 Soft rock Squeezing deformation Damage DILATANCY FRACTURING elasto-plastic and viscoplastic damage constitutive model
下载PDF
An elasto-plastic constitutive model of moderate sandy clay based on BC-RBFNN 被引量:1
7
作者 彭相华 王智超 +2 位作者 罗涛 余敏 罗迎社 《Journal of Central South University》 SCIE EI CAS 2008年第S1期47-50,共4页
Application research of neural networks to geotechnical engineering has become a hotspot nowadays.General model may not reach the predicting precision in practical application due to different characteristics in diffe... Application research of neural networks to geotechnical engineering has become a hotspot nowadays.General model may not reach the predicting precision in practical application due to different characteristics in different fields.In allusion to this,an elasto-plastic constitutive model based on clustering radial basis function neural network(BC-RBFNN) was proposed for moderate sandy clay according to its properties.Firstly,knowledge base was established on triaxial compression testing data;then the model was trained,learned and emulated using knowledge base;finally,predicting results of the BC-RBFNN model were compared and analyzed with those of other intelligent model.The results show that the BC-RBFNN model can alter the training and learning velocity and improve the predicting precision,which provides possibility for engineering practice on demanding high precision. 展开更多
关键词 elasto-plastic CONSTITUTIVE model artificial NEURAL NETWORK BC-RBFNN(based on clustering radial basis function NEURAL network) MODERATE SANDY clay
下载PDF
Elasto-plastic analysis of masonry with anisotropic plastic material model 被引量:1
8
作者 闫凯 郑文忠 王英 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第5期74-80,共7页
This paper establishes an anisotropic plastic material model to analyze the elasto-plastic behavior of masonry in plane stress state.Being an anisotropic material,masonry has different constitutive relation and fractu... This paper establishes an anisotropic plastic material model to analyze the elasto-plastic behavior of masonry in plane stress state.Being an anisotropic material,masonry has different constitutive relation and fracture energies along each orthotropic axes.Considering the unique material properties of masonry,a new yield criterion for masonry is proposed combining the Hill's yield criterion and the Rankine's yield criterion.The new yield criterion not only introduces compression friction coefficient of shear but also considers yield functions for independent stress state along two material axes of tension.To solve the involved nonlinear equations in numerical analysis,several nonlinear methods are implemented,including Newton-Raphson method for nonlinear equations and Implicit Euler backward mapping algorithm to update stresses.To verify the proposed material model of masonry,a series of tests are operated.The simulation results show that the new developed material model implements successfully.Compared with isotropic material model,the proposed model performs better in elasto-plastic analysis of masonry in plane stress state.The proposed anisotropic model is capable of simulating elasto-plastic behavior of masonry and can be used in related applications. 展开更多
关键词 MASONRY anisotropic plastic material model ISOTROPIC yield criterion elasto-plastic analysis
下载PDF
Fractal model of thermal elasto-plastic contact of rough surfaces
9
作者 FENG Yan YANG Peng +3 位作者 ZHANG Yan-yan SHI Li-qiu HANG Zhou-ming FENG Yi-xiong 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1500-1509,共10页
Without considering the influence of heat,existing fractal contact models are not applicable to analyze the contacts when the temperature changes.For this problem,the normal load model and the normal stiffness model o... Without considering the influence of heat,existing fractal contact models are not applicable to analyze the contacts when the temperature changes.For this problem,the normal load model and the normal stiffness model of thermal elasto-plastic contact of rough surfaces are developed respectively in this paper.The proposed model is based on the normal contact mechanics model of fractal theory of anisotropic and thermal elasto-plastic contact theory which can be used to characterize the rough surface thermodynamic properties.Then the validity of the model is verified.Finally,the influence of main parameters on the total normal load and the whole normal stiffness of thermal elasto-plastic contact at the interface is analyzed by contact simulation.The results show that the total normal load of thermal elasto-plastic contact increases with the increases of temperature.The whole normal stiffness of thermal elasto-plastic contact increases with increasing coefficient of linear expansion,scale factor,temperature difference or fractal dimension,but decreases with increasing fractal roughness.This model expands basic theory and applications of traditional models,and can be used to calculate and analyze the contacts when the temperature changes. 展开更多
关键词 rough surfaces thermal elasto-plastic ASPERITY fractal model
下载PDF
Modeling of normal faulting in the subducting plates of the Tonga,Japan,Izu-Bonin and Mariana Trenches:implications for near-trench plate weakening 被引量:5
10
作者 ZHOU Zhiyuan LIN Jian ZHANG Fan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第11期53-60,共8页
The plate flexure and normal faulting characteristics along the Tonga, Japan, Izu-Bonin and Mariana Trenches are investigated by combining observations and modeling of elastoplastic deformation of the subducting plate... The plate flexure and normal faulting characteristics along the Tonga, Japan, Izu-Bonin and Mariana Trenches are investigated by combining observations and modeling of elastoplastic deformation of the subducting plate. The observed average trench relief is found to be the smallest at the Japan Trench(3 km) and the largest at the Mariana Trench(4.9 km), and the average fault throw is the smallest at the Japan Trench(113 m) and the largest at the Tonga Trench(284 m). A subducting plate is modeled to bend and generate normal faults subjected to three types of tectonic loading at the trench axis: vertical loading, bending moment, and horizontal tensional force. It is inverted for the solutions of tectonic loading that best fit the observed plate flexure and normal faulting characteristics of the four trenches. The results reveal that a horizontal tensional force(HTF) for the Japan Trench is 33%, 50% and 60% smaller than those of the Mariana, Tonga and Izu-Bonin Trenches, respectively. The normal faults are modeled to penetrate to a maximum depth of 29, 23, 32 and 32 km below the sea floor for the Tonga,Japan, Izu-Bonin and Mariana Trenches, respectively, which is consistent with the depths of relocated normal faulting earthquakes in the Japan and Izu-Bonin Trenches. Moreover, it is argued that the calculated horizontal tensional force is generally positively correlated with the observed mean fault throw, while the integrated area of the reduction in the effective elastic thickness is correlated with the trench relief. These results imply that the HTF plays a key role in controlling the normal faulting pattern and that plate weakening can lead to significant increase in the trench relief. 展开更多
关键词 normal fault geodynamic model plate weakening flexural bending elasto-plastic deformation
下载PDF
Elastoplastic model for discontinuous shear deformation of deep rock mass 被引量:3
11
作者 王明洋 范鹏贤 +1 位作者 钱七虎 邓宏见 《Journal of Central South University》 SCIE EI CAS 2011年第3期866-873,共8页
Deep rock mass possesses some unusual properties due to high earth stress,which further result in new problems that have not been well understood and explained up to date.In order to investigate the deformation mechan... Deep rock mass possesses some unusual properties due to high earth stress,which further result in new problems that have not been well understood and explained up to date.In order to investigate the deformation mechanism,the complete deformation process of deep rock mass,with a great emphasis on local shear deformation stage,was analyzed in detail.The quasi continuous shear deformation of the deep rock mass is described by a combination of smooth functions:the averaged distribution of the original deformation field,and the local discontinuities along the slip lines.Hence,an elasto-plastic model is established for the shear deformation process,in which the rotational displacement is taken into account as well as the translational component.Numerical analysis method was developed for case study.Deformation process of a tunnel under high earth stress was investigated for verification. 展开更多
关键词 deep rock mass discontinuous deformation elasto-plastic model
下载PDF
A work-hardening and softening constitutive model for sand:modified plastic strain energy approach
12
作者 FanglePeng M.S.A.Siddiquee ShaomingLiao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第1期76-86,共11页
The paper describes an energy-based constitutive model for sand, which is modified based on the modified plastic strain energy approach, represented by a unique relationship between the modified plastic strain energy ... The paper describes an energy-based constitutive model for sand, which is modified based on the modified plastic strain energy approach, represented by a unique relationship between the modified plastic strain energy and a stress parameter, independent of stress history. The modified plastic strain energy approach was developed based on results from a series of drained plastic strain compression tests along various stress paths on saturated dense Toyoura sand with accurate stress and strain measurements. The proposed model is coupled with an isotropically work-hardening and softening, non-associtated, elasto-plastic material description. The constitutive model concerns the inherent and stress system-induced cross-anisotropic elastic deformation properties of sand. It is capable of simulating the deformation characteristics of stress history and stress path, the effects of pressure level, anisotropic strength and void ratio, and the strain localization. 展开更多
关键词 SAND Energy-based Hardening and softening elasto-plastic model Stress-strain relation
下载PDF
STRUCTURAL DAMAGE MODEL OF UNSATURATED EXPANSIVE SOIL AND ITS APPLICATION IN MULTI-FIELD COUPLE ANALYSIS ON EXPANSIVE SOIL SLOPE
13
作者 卢再华 陈正汉 +2 位作者 方祥位 郭剑峰 周海清 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第7期891-900,共10页
Focused on the sensitivity to climate change and the special mechanical characteristics of undisturbed expansive soil, an elasto-plastic damage constitutive model was proposed based on the mechanics of unsaturated soi... Focused on the sensitivity to climate change and the special mechanical characteristics of undisturbed expansive soil, an elasto-plastic damage constitutive model was proposed based on the mechanics of unsaturated soil and the mechanics of damage. Undisturbed expansive soil was considered as a compound of non-damaged part and damaged part. The behavior of the non-damaged part was described using non-linear constitutive model of unsaturated soil. The property of the damaged part was described using a damage evolution equation and two yield surfaces, i.e., loading yield (LY) and shear yield (SY). Furthermore, a consolidation model for unsaturated undisturbed expansive soil was established and a FEM program named UESEPDC was designed. Numerical analysis on solid-liquid-gas tri-phases and multi-field couple problem was conducted for four stages and fields of stress, displacement, pore water pressure, pore air pressure, water content, suction, and the damage region as well as plastic region in an expansive soil slope were obtained. 展开更多
关键词 unsaturated expansive soil elasto-plastic damage constitutive model CONSOLIDATION soil slope RAINING EVAPORATING numerical analysis
下载PDF
Nonlinear Micromechanical Modelling of Transverse Tensile Damage Behavior in Fiber-Reinforced Polymer Composites
14
作者 Nian Li 《Structural Durability & Health Monitoring》 EI 2019年第4期331-346,共16页
The investigation focusing on the mechanical behaviors at the microstructural level in composite materials can provide valuable insight into the failure mechanisms at larger scales.A micromechanics damage model which ... The investigation focusing on the mechanical behaviors at the microstructural level in composite materials can provide valuable insight into the failure mechanisms at larger scales.A micromechanics damage model which comprises the coupling of the matrix constitutive model and the cohesive zone(CZM)model at fiber-matrix interfaces is presented to evaluate the transverse tensile damage behaviors of unidirectional(UD)fiber-reinforced polymer(FRP)composites.For the polymeric matrix that exhibits highly non-linear mechanical responses,special focus is paid on the formulation of the constitutive model,which characterizes a mixture of elasticity,plasticity as well as damage.The proposed constitutive model includes the numerical implementation of a fracture plane based ellipse-parabola criterion that is an extension of the classic Mohr-Coulomb criterion,corresponding post-yield flow rule and post-failure degradation rule in the fully implicit integration scheme.The numerical results are in good agreement with experimental measurements.It is found that directly using the matrix properties measured at the ply level to characterize the mechanical responses at the constituent level may bring large discrepancies in homogenized stress-strain responses and dominant failure mechanisms.The distribution of fracture plane angles in matrix is predicted,where it is shown to provide novel insight into the microscopic damage initiation and accumulation under transverse tension. 展开更多
关键词 Fracture plane angle elasto-plasticITY DAMAGE micromechanical model polymer matrix composites
下载PDF
Use of the Cam-Clay Model in Finite Element Calculations after Identification of Soils from Simple Mechanical Tests
15
作者 Cheikhou Ndiaye Yves Berthaud Raphael Catusse 《Geomaterials》 2021年第3期59-68,共10页
In order to make the use of complex elasto-plastic behavior models more accessible, we attempted to identify the Cam-Clay model in two samples of tropical and lateritic soils (from Senegal/West Africa) from casagrande... In order to make the use of complex elasto-plastic behavior models more accessible, we attempted to identify the Cam-Clay model in two samples of tropical and lateritic soils (from Senegal/West Africa) from casagrande box shear and oedometric tests. This methodology was used as a substitute for triaxial trials. In this article, we first verify the test results by the finite element method with the Optum software. We use a simulation of the tests with the modified Cam Clay model as the behavior model. Then, we simulate the oedometric test on tropical soils with the Castem software and also use the modified Cam Clay model. These calculations make it possible to write the criterion of plasticity of the material starting from the expression of the surface of load while passing by the calculation of the volumetric and deviatoric stresses. 展开更多
关键词 modelling Comportment elasto-plasticITY Load Surface CONSTRAINTS VOLUMETRIC Deviatoric Simulation Optum Cast3M CRITERIA TROPICAL Lateritic SOILS
下载PDF
A coupled elasto-plastic-damage mechanical model for marble 被引量:5
16
作者 ZHOU Hui 1,ZHANG Kai 2 & FENG XiaTing 1 1 State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan 430071,China 2 State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining&Technology,Xuzhou 221008,China 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第S1期228-234,共7页
A profound understanding of the mechanical behaviors of marble is very important for the design and construction of deep diversion tunnels in Jinping II hydropower station.In this paper,a coupled elasto-plastic-damage... A profound understanding of the mechanical behaviors of marble is very important for the design and construction of deep diversion tunnels in Jinping II hydropower station.In this paper,a coupled elasto-plastic-damage mechanical model is presented for Jinping marble.Firstly,the experimental investigations on Jinping marble are summarized.Then,based on the framework of continuum damage and plastic theories,a general mechanical model is proposed to predict the mechanical responses of Jinping marble.The proposed model is used to simulate the triaxial compressive tests,and there is a general good agreement between experimental data and numerical predictions in a qualitative manner.The proposed model is able to capture the main features of Jinping marble observed in experiments,such as progressive yielding process,damage induced by plastic distortion,dilation,elastic degradation and stress sensitivity. 展开更多
关键词 MECHANICAL model DAMAGE elasto-plastic COUPLING MARBLE
原文传递
Micro-mechanical model for predicting the elasto-plastic behavior of composites based on secant formulation method 被引量:1
17
作者 Junhao LIANG Xinhai HE Wenlong TIAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第1期281-295,共15页
To predict the Elasto-Plastic Behaviors(EPBs)of aligned inclusions reinforced composites,this paper develops an interpolative Mori-Tanaka/Double-Inclusion(MT-DI)homogenization model with the secant formulation,and giv... To predict the Elasto-Plastic Behaviors(EPBs)of aligned inclusions reinforced composites,this paper develops an interpolative Mori-Tanaka/Double-Inclusion(MT-DI)homogenization model with the secant formulation,and gives the numerical implementation algorithms of the developed MT-DI model with the secant formulation.The Finite Element(FE)homogenization method is implemented to provide the "exact" EPBs of the composites and thus validate the MT-DI model with the secant formulation.The MT-DI model with the 2 nd-order secant formulation is validated to provide the more accurate predictions,while the MT-DI model with the 1 st-order secant formulation always gives the stiffer predictions.The results show that using the macro-stress and macrostrain as the inputs,the MT-DI model with the secant formulation gives the identical predictions.The predictions of the MT-DI model with the secant formulation vary between those of the MT and DI models with the secant formulation.Meanwhile,the MT-DI model with the secant formulation does not predict the accurate EPBs for the phases of the composites. 展开更多
关键词 elasto-plastic behavior FE homogenization Mean-field homogenization MT-DI model Secant formulation
原文传递
Analytical solutions of stress and displacement in strain softening rock mass around a newly formed cavity 被引量:5
18
作者 鲁燕儿 杨武 《Journal of Central South University》 SCIE EI CAS 2013年第5期1397-1404,共8页
The closed form solutions of the stress and displacement in strain softening rock mass around a newly formed cavity are derived with a three step-wise elasto-plastic model. Hoek-Brown criterion is adopted as the yield... The closed form solutions of the stress and displacement in strain softening rock mass around a newly formed cavity are derived with a three step-wise elasto-plastic model. Hoek-Brown criterion is adopted as the yielding criterion of rock mass. Damage factors are proposed to account for degradation of the material parameters to reflect the degree of strain softening. The surrounding rock mass around the cavity is divided into three regions: elastic region, strain softening region and residual state region. The analytical solutions of stress, strain, displacement and radius of each region are obtained. The effects of the strain softening and shear dilatancy behavior on the results are investigated with parametric studies. The results show that the radii of the residual state region and strain softening region in the surrounding rock mass with higher damage degree are larger. The radii of the residual state region and strain softening region are 1-2 times and 1.5-3 times of the cavity radius, respectively. The radial and tangential stresses decrease with the increase of the damage factor. The displacement of the cavity wall for the case with maximum plastic bulk strain is nearly twice than that with no dilation. Rock mass moves more toward the center for the case with larger damage factor and shear dilation. The area of the plastic region is larger when the damage factors are considered. The displacements in the surrounding rock mass increase with the increase of the damage factors and shear dilation factors. The solutions can be applied to the stability analysis and support design of the underground excavation. 展开更多
关键词 strain softening Hoek-Brown criterion step-wise elasto-plastic model damage factor shear dilation
下载PDF
An Elasto-plastic Damage Constitutive Theory Based on Pair Functional Potentials and Slip Mechanism 被引量:4
19
作者 Liu Fang Fu Qiang +1 位作者 Chen Cen Liang Naigang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第6期686-697,共12页
The deformation work rate can be expressed by the time rate of pair functional potentials which describe the energy of materi- als in terms of atomic bonds and atom embedding interactions. According to Cauchy-Born rul... The deformation work rate can be expressed by the time rate of pair functional potentials which describe the energy of materi- als in terms of atomic bonds and atom embedding interactions. According to Cauchy-Born rule, the relations between the micro- scopic deformations of atomic bonds and electron gas and macroscopic deformation are established. Further, atomic bonds are grouped according to their directions, and atomic bonds in the same direction are simplified as a spring-bundle component. Atom embedding interactions in unit reference volume are simplified as a cubage component. Consequently, a material model com- posed of spring-bundle components and a cubage component is established. Since the essence of damage is the decrease and loss of atomic bonding forces, the damage effect can be reflected by the response functions of these two kinds of components. For- mulating the mechanical responses of two kinds of components, the corresponding elasto-damage constitutive equations are de- rived. Considering that slip is the main plastic deformation mechanism of polycrystalline metals, the slip systems of crystal are extended to polycrystalline, and the slip components are proposed to describe the plastic deformation. Based on the decomposition of deformation gradient and combining the plastic response with the elasto-damage one, the elasto-plastic damage constitutive equations are derived. As a result, a material model iormulated with spring-bundle components, a cubage component and slip components is established. Different from phenomenological constitutive theories, the mechanical property of materials depends on the property of components rather than that directly obtained on the representative volume element. The effect of finite deformation is taken into account in this model. Parameter calibration procedure and the basic characteristics of this model are discussed. 展开更多
关键词 elasto-plastic damage constitutive relation finite deformation pair functional potentials Cauchy-Born rule slipmechanism component assembling model
原文传递
MECHANISM OF WATER-SOIL COUPLED ACTION DURING MINING SUBSIDENCE 被引量:4
20
作者 狄乾生 黄山民 《Journal of China University of Mining and Technology》 1991年第1期105-116,共12页
This paper,on the basis of the scientific research of engineering geological exploration in a mining area,systematically studies the reasons and influence factors of consolidation and deformation of the saturated soil... This paper,on the basis of the scientific research of engineering geological exploration in a mining area,systematically studies the reasons and influence factors of consolidation and deformation of the saturated soil included in the thick loose water-bearing overburden due to mining subsidence,and analyses the dissipation of hyperstatic pore water pressure during the change of original stress and strain state of the soil. Again,by means of the coupled model based on Cambridge model and Biot's three-dimensional consolidation theory,adopting a great many physico-mechanical parameters measured in various soil layers,the paper analyses the consolidation and deformation of saturated soil affected by mining subsidence with elasto-plastic finite element method.Thus,the research not only reveals the regulation of stress,strain,displacement and hyperstatic pore water pressure dissipation in overlying soil mass,but also opens up a new direction and way for the research of mining subsidence. 展开更多
关键词 mining subsidence coupled model finite element method elasto-plastic theory
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部