Based on the framework of critical state soil mechanics,a subloading surface plastic model for sand, being applicable to cyclic loading, was proposed. The model can be used to describe strain softening behaviour of sa...Based on the framework of critical state soil mechanics,a subloading surface plastic model for sand, being applicable to cyclic loading, was proposed. The model can be used to describe strain softening behaviour of sand under monotonic loading when the similarity-ratio equals to unity. The characteristics of the model are as follows: 1) A reverse bullet-shaped yield surface is adopted to ensure accurate prediction of the behavior of sand, instead of bullet-shaped or elliptical yield surface in Cam-Clay model. 2) No unique relationship between void ratio and the mean normal stress for sand prevents the direct coupling of yield surface size to void ratio, so incremental deviatoric strain hardening rule is used. 3) The model combines the concept of state-dependent dilatancy by incorporating state parameter in Rowe's stress dilatancy equation, which accounts for the dependence of dilatancy on the stress state and the material internal state. A single set of model constants, which is calibrated, can simulate stress-strain response under different initial void ratios and different confine pressures. The model is validated true by comparing predicted results with experimental results under monotonic and cyclic loading conditions.展开更多
The non-isothermal deformation of soft mudrocks or clay soils is one of the most critical issues in energy and environmental related geotechnics.Clay-related geomaterials hold complex microstructure and mineral compos...The non-isothermal deformation of soft mudrocks or clay soils is one of the most critical issues in energy and environmental related geotechnics.Clay-related geomaterials hold complex microstructure and mineral composition,which brings difficulty in investigating their thermo-mechanical behaviors.Previous studies pay little attention to the difference between a thermal plastic strain and the strain from clay dehydration.In this study,a new constitutive model is proposed for describing the thermoelastoplastic behaviors of clayey soils under water-saturated condition.The effect of temperature variation and mechanical loading on elastoplastic strains and dehydration are investigated.The thermodynamics laws and the unconventional plasticity are applied to quantify the thermo-mechanical behavior.The irreversible strain is captured by using Cam-Clay plasticity and subloading yield surface concept.The dehydration strain is described by utilizing a novel method based on generalized thermodynamics approach and Helmholtz free energy function.The internal variables,and the first and second laws of thermodynamics are applied in the model.The hardening rule is established by implementing the laws of physical conservation,energy dissipation,and plastic flow.The proposed model is validated using specially designed thermal consolidation tests on laboratory prepared heavily consolidated clayey soils and some published data of clayey soils with different geological origins.展开更多
基金Project(07JCZDJC09800) supported by Tianjin Natural Science FoundationProject(07FDZDSF01200) supported by Tianjin Science and Technology Innovation Special Funds
文摘Based on the framework of critical state soil mechanics,a subloading surface plastic model for sand, being applicable to cyclic loading, was proposed. The model can be used to describe strain softening behaviour of sand under monotonic loading when the similarity-ratio equals to unity. The characteristics of the model are as follows: 1) A reverse bullet-shaped yield surface is adopted to ensure accurate prediction of the behavior of sand, instead of bullet-shaped or elliptical yield surface in Cam-Clay model. 2) No unique relationship between void ratio and the mean normal stress for sand prevents the direct coupling of yield surface size to void ratio, so incremental deviatoric strain hardening rule is used. 3) The model combines the concept of state-dependent dilatancy by incorporating state parameter in Rowe's stress dilatancy equation, which accounts for the dependence of dilatancy on the stress state and the material internal state. A single set of model constants, which is calibrated, can simulate stress-strain response under different initial void ratios and different confine pressures. The model is validated true by comparing predicted results with experimental results under monotonic and cyclic loading conditions.
基金funded by Natural Sciences and Engineering Research Council of Canada(NSERC)Discovery Grant Canada(Grant No.RGPIN-2017-05169).
文摘The non-isothermal deformation of soft mudrocks or clay soils is one of the most critical issues in energy and environmental related geotechnics.Clay-related geomaterials hold complex microstructure and mineral composition,which brings difficulty in investigating their thermo-mechanical behaviors.Previous studies pay little attention to the difference between a thermal plastic strain and the strain from clay dehydration.In this study,a new constitutive model is proposed for describing the thermoelastoplastic behaviors of clayey soils under water-saturated condition.The effect of temperature variation and mechanical loading on elastoplastic strains and dehydration are investigated.The thermodynamics laws and the unconventional plasticity are applied to quantify the thermo-mechanical behavior.The irreversible strain is captured by using Cam-Clay plasticity and subloading yield surface concept.The dehydration strain is described by utilizing a novel method based on generalized thermodynamics approach and Helmholtz free energy function.The internal variables,and the first and second laws of thermodynamics are applied in the model.The hardening rule is established by implementing the laws of physical conservation,energy dissipation,and plastic flow.The proposed model is validated using specially designed thermal consolidation tests on laboratory prepared heavily consolidated clayey soils and some published data of clayey soils with different geological origins.