期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Simplified Graphical Procedure for Constructing a 10˚or 20˚Angle
1
作者 Lyndon O. Barton 《Advances in Pure Mathematics》 2023年第7期442-448,共7页
This paper presents a simplified graphical procedure for constructing, using an unmarked straightedge and a compass only, a 10˚ to 20˚ angle, which is in other words, trisecting a 30˚ or 60˚ angle. The procedure, when... This paper presents a simplified graphical procedure for constructing, using an unmarked straightedge and a compass only, a 10˚ to 20˚ angle, which is in other words, trisecting a 30˚ or 60˚ angle. The procedure, when applied to the 30˚ and 60˚ angles that have been “proven” to be not trisectable, produced a construction having the identical angular relationship with Archimedes’ Construction, in which the required trisection angles were found to be 10.00000˚ and 20.00000˚ respectively (i.e. exactly one-third of the given angle or ∠E’MA = 1/3∠E’CG). Based on this identical angular relationship as well as the numerical results obtained, one can only conclude that the geometric requirements for arriving at an exact trisection of the 30˚ or 60˚ angle, and therefore the construction of a 10˚ or 20˚ angle, have been met, notwithstanding the theoretical proofs of Wantzel, Dudley, and others. Thus, the solution to the age-old trisection problem, with respect to these two angles, has been accomplished. 展开更多
关键词 Archimedes’ Construction College Geometry angle trisection trisection of an angle Famous Problems in Mathematics. Geometer’s Sketch Pad Mechanisms Mechanism analysis Kinematics trisector
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部