China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the saf...China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the safety limit during tritium handling and operation in the fuel cycle system.Our tritium technology team is responsible for studying tritium transport behavior in the CFETR tritium safety confinement systems of the National Key R&D Program of China launched in 2017,and we are conducting CFETR tritium plant safety analysis by using CFD software.In this paper,the tritium migration and removal behavior were studied under a postulated accident condition for the Tokamak Exhaust Processing system of CFETR.The quantitative results of the transport behavior of tritium in the process room and glove box during the whole accident sequence(e.g.,tritium release,alarm,isolation,and tritium removal)have been presented.The results support the detailed design and engineering demonstration-related research of CFETR tritium plant.展开更多
Beishan region in Gansu was the preselected area for China's high-level radioactive waste(HLW) repository. In selecting and evaluating a new dump site, the tritium study is of great significance. The Xinchang-Xian...Beishan region in Gansu was the preselected area for China's high-level radioactive waste(HLW) repository. In selecting and evaluating a new dump site, the tritium study is of great significance. The Xinchang-Xiangyangshan preselected area in the Beishan area was taken as an example. This paper selects typical unit and tries to use the distribution characteristics of tritium in the soil to study the atmospheric precipitation infiltration recharge in this area. The results show: In this region, the spatial variability of the tritium content in surface soil is large; it is feasible to use bound tritium tracer method to study the theory of atmospheric precipitation infiltration recharge; the atmospheric precipitation infiltration has close relationship with the soil particle composition, salt content, mineral composition, water content and organic matter content. These results can provide important basis for developing the atmospheric precipitation infiltration recharge, groundwater numerical simulation, nuclide migration study and so on.展开更多
Nowadays, isotope environmental technique tends to be used as a reconnaissance tool , both qualitative and quantitative, to calculate the aquifer parameters particularly in carbonate rock aquifers. But, the hetero...Nowadays, isotope environmental technique tends to be used as a reconnaissance tool , both qualitative and quantitative, to calculate the aquifer parameters particularly in carbonate rock aquifers. But, the heterogeneous flow is still problematic when Lumped parameter Models are usually used to calculate the residence times and hydraulic parameters. However, Discrete State Compartment Model can provide a powerful model to heterogeneous medium. One such study was carried on in Dazha valley, where the environmental tritium was used as a tracer for determining hydrogeological parameters based on a discrete state compartment model展开更多
A non-destructive and in-situ technique for the measurement of tritium in materials, namely β-ray-induced X-ray spectrometry (BIXS), has been developed recently. In the present study a V-4Cr-4Ti alloy was pre-heate...A non-destructive and in-situ technique for the measurement of tritium in materials, namely β-ray-induced X-ray spectrometry (BIXS), has been developed recently. In the present study a V-4Cr-4Ti alloy was pre-heated at 1000℃ for 2 h to form a recrystallization structure before the tritium absorption experiments were conducted. Firstly the hydrogen isotope gas was charazterized by means of a quadrupole mass spectrometer (QMS) and a small-sized ionization chamber. Then hydrogen isotope absorption tests of V-4Cr-4Ti alloy were performed at 400 ℃ and the atomic concentration of hydrogen isotope in V-4Cr-4Ti alloy was estimated as 0.17% with a tritium content of approximately 2.5 ppm. Experimental results indicate that BIXS is a quite useful tool for quantitatively measuring the tritium content and tritium distribution in the surface layers of vanadium alloys and no strong trapping effects of tritium exist in the pre-heated V-4Cr-4Ti alloy.展开更多
Tritium concentrations in precipitation can be used as a criterion to evaluate the tritium baseline of the environment. The tritium concentration in precipitation in Shanghai during 2014-2015 was determined. Values ra...Tritium concentrations in precipitation can be used as a criterion to evaluate the tritium baseline of the environment. The tritium concentration in precipitation in Shanghai during 2014-2015 was determined. Values ranged from 0.68 ± 0.04 to 4.11 ± 0.39 Bq/L, and it showed a decreasing trend compared with historical data; however,the values were slightly higher than the natural background tritium level. Additionally, the tritium concentration shows a seasonal variation: It was higher in autumn and winter and lower in summer and spring. A comparison of concentrations in precipitation in Shanghai and around the Qinshan Nuclear Power Plant reveals no correlation,implying that the nuclear power plant operations may not affect the environment of Shanghai. Thus, the raised tritium concentrations in Shanghai might be due to the effects of monsoons, spring leak, raindrop, or other activities that generate tritium there. Those activities may include chemistry research that uses tritium as a tracer.展开更多
Residual thermal stress in the system is a serious problem that affects the application of tritium permeation barrier coatings in fusion reactors. The stress not only determines the adhesion between coating and substr...Residual thermal stress in the system is a serious problem that affects the application of tritium permeation barrier coatings in fusion reactors. The stress not only determines the adhesion between coating and substrate, but also changes the properties of the material. In this study,finite element analysis was used to investigate the relationship between the residual thermal stress and the mechanical properties of Al_2O_3 tritium penetration barrier systems. Moreover, the residual thermal stress influenced by factors such as different substrates, temperature, and substrate roughness was also analyzed. The calculation showed that the hardness and elastic modulus increased with increasing compressive stress. However, the hardness and elastic modulus decreased with increasing tensile stress. The systems composed of Al_2O_3 coatings and different substrates exhibited different trends in mechanical properties. As the temperature increased, the hardness and the elastic modulus increased in an Al_2O_3/316 L stainless steel system; the trend was opposite in an Al_2O_3/Si system.Apart from this, the roughness of the substrate surface in the system could magnify the change in hardness and elastic modulus of the coating. Results showed that all these factors led to variation in the mechanical properties of Al_2O_3 tritium permeation barrier systems. Thus, thedetailed reasons for the changes in mechanical properties of these materials need to be analyzed.展开更多
For a more systematic understanding of the levels of environmental tritium and its behavior in East Asia,a database on environmental tritium was established based on the literature published in the past 30 years.Subse...For a more systematic understanding of the levels of environmental tritium and its behavior in East Asia,a database on environmental tritium was established based on the literature published in the past 30 years.Subsequently,the levels and behavior of the environmental tritium were further studied by statistical analyses.The results indicate that the distribution of environmental tritium is inhomogeneous and complex.In areas without nuclear facilities,the level of environmental tritium has decreased to its background level,even though a certain number of atmospheric nuclear tests were performed before 1980.In general,the level of atmospheric tritium was marginally higher than the levels in precipitation and surface water;the levels in shallow groundwater and seawater were considerably lower.Furthermore,the levels of tritium in the atmosphere,precipitation,and inland surface water were strongly correlated with latitude and distance from the coastline.In soil and living organisms,the level of tissue-free water tritium(TFWT)was comparable to the tritium levels in local rainfall,whereas the persistence of organically bound tritium(OBT)in the majority of organisms resulted in an OBT/TFWT ratio greater than one.Conversely,extremely high levels of environmental tritium were observed near certain nuclear power plants and the Fukushima accident sites.These results highlight the requirement to know the tritium baseline level and its behavior in the environment beforehand to better assess the impact of tritium discharge.Further investigations of environmental tritium in East Asia using more efficient and adequate monitoring methods are also required.展开更多
A method of measuring the tritium in seawater based on electrolytic enrichment and ultra-low background liquid scintillation counting techniques was established.The different factors influencing the detection limit we...A method of measuring the tritium in seawater based on electrolytic enrichment and ultra-low background liquid scintillation counting techniques was established.The different factors influencing the detection limit were studied,including the counting time,the electrolytic volume of the seawater samples,the selection of background water,scintillation solution and their ratio.After optimizing the parameters and electrolyzing 350 mL volume of samples,the detection limit of the method was as low as 0.10 Bq/L.In order to test the optimization of system for this method,of the 84 seawater samples collected from the Arctic Ocean we measured,92%were above the detection limit(the activity of this samples ranged from 0.10 Bq/L to 1.44 Bq/L with an average of(0.30±0.24)Bq/L).In future research,if we need to accurately measure the tritium activity in samples,the volume of the electrolytic samples will be increased to further reduce the minimum detectable activity.展开更多
An efficient procedure for the synthesis of agmatine labelled with tritium and deuterium is reported. The final tritiated product 4 was obtained with a specific activity of 40 Ci/mmol and a radiochemical purity of 95%.
In this study,the effects of changing first wall materials and their thicknesses on a reactor were investigated to determine the displacement per atom(DPA)and gas production(helium and hydrogen)in the first wall,as we...In this study,the effects of changing first wall materials and their thicknesses on a reactor were investigated to determine the displacement per atom(DPA)and gas production(helium and hydrogen)in the first wall,as well as the tritium breeding ratio(TBR)in the coolant and tritium breeding zones.Therefore,the modeling of the magnetic fusion reactor was determined based on the blanket parameters of the International Thermonuclear Experimental Reactor(ITER).Stainless steel(SS 316 LNIG),Oxide Dispersion Strengthened Steel alloy(PM2000 ODS),and China low-activation martensitic steel(CLAM)were used as the first wall(FW)materials.Fluoride family molten salt materials(FLiBe,FLiNaBe,FLiPb)and lithium oxide(LiO_(2))were considered the coolant and tritium production material in the blanket,respectively.Neutron transport calculations were performed using the wellknown 3D code MCNP5 using the continuous-energy Monte Carlo method.The built-in continuous energy nuclear and atomic data libraries along with the Evaluated Nuclear Data file(ENDF)system(ENDF/B-V and ENDF/B-VI)were used.Additionally,the activity cross-section data library CLAW-IV was used to evaluate both the DPA values and gas production of the first wall(FW)materials.An interface computer program written in the FORTRAN 90 language to evaluate the MCNP5 outputs was developed for the fusion reactor blanket.The results indicated that the best TBR value was obtained for the use of the FLiPb coolant,whereas depending on the thickness,the first wall replacement period in terms of radiation damage to all materials was between 6 and 11 years.展开更多
The triple-to-double coincidence ratio (TDCR) method of liquid scintillation count- ing is an absolute measurement method of radioactivity. The formulation of the TDCR method and the established TDCR liquid scintill...The triple-to-double coincidence ratio (TDCR) method of liquid scintillation count- ing is an absolute measurement method of radioactivity. The formulation of the TDCR method and the established TDCR liquid scintillation counter are presented in this paper. The NIST standard reference material (SRM) of tritium water was measured to verify the performance of the TDCR liquid scintillation counter.展开更多
Salt-resistant Bacillus strains, isolated from agricultural soils in Uzbekistan, were tested for degradation activity towards a mixture of polychlorinated biphenyls (PCBs) under aerobic conditions. The study employed ...Salt-resistant Bacillus strains, isolated from agricultural soils in Uzbekistan, were tested for degradation activity towards a mixture of polychlorinated biphenyls (PCBs) under aerobic conditions. The study employed the use of tritium labeled PCB congeners and traced the tritium label in cultures with high salt content. The experiments show that most of the selected strains were able to adsorb a part of the radioactivity, indicating transformation of the added PCBs. Gas chromatography demonstrated transformation of PCBs. The radioactive label was removed from several cultures by up to 91%, indicating also mineralization of PCBs. The study suggests that the isolated strains might be good candidates for the bioremediation of contaminated high-salt soils in Uzbekistan and other Central-Asian countries.展开更多
Tritium permeation through the first wall (FW) from the plasma into helium coolant is evaluated for a dual-functional lithium-lead test blanket module (DFLL-TBM). The effect of the surface conditions on the plasma...Tritium permeation through the first wall (FW) from the plasma into helium coolant is evaluated for a dual-functional lithium-lead test blanket module (DFLL-TBM). The effect of the surface conditions on the plasma facing and coolant sides, both temperature gradient and beryllium layer clad on the plasma facing side, as well as trapping in defects on the tritium permeation is considered. The results show that most of the tritium implanted in FW re-entered the plasma. The plasma-driven tritium permeation is very sensitive to the surface conditions on the plasma facing side. With a higher sticking coefficient on the plasma-facing side, the tritium permeation into helium coolant is significantly reduced. The tritium permeation is strongly reduced with a beryllium layer clad on the front side of FW. The plasma driven tritium permeation will not seriously impact the tritium safety of DFLL-TBM. Based on tritium safety, it is reasonable to clothe the beryllium layer on FW and keep the surface clean to reduce the plasma driven tritium permeation.展开更多
Tritium self-sustainment, which will meet the fuel requirement of fusion reactor, is one of the key issues of fusion power development. The tritium breeding performances of various tritium-breeding materials are compa...Tritium self-sustainment, which will meet the fuel requirement of fusion reactor, is one of the key issues of fusion power development. The tritium breeding performances of various tritium-breeding materials are compared based on a series of neutronics calculations using three-dimensional Monte Carlo neutron-photon transport code MCNP/4C with the IAEA FENDL-2 data library. The effects of the dimensions of the tritium-breeding zone and the enrichment of 6Li on Tritium Breeding Ratio (TBR) are analyzed. The effects of Be as a neutron multiplier on TBR are also calculated.展开更多
Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor(CFETR) operating on a Deuterium-Tritium(D-T) fuel cycle. It is necessary to study the tritium breeding ...Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor(CFETR) operating on a Deuterium-Tritium(D-T) fuel cycle. It is necessary to study the tritium breeding ratio(TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder(WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket,the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code(MCNP) and the fusion activation code FISPACT-2007.The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation.In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW.展开更多
India has proposed the helium-cooled solid breeder blanket concept as a tritium breeding module to be tested in ITER.The module has lithium titanate for tritium breeding and beryllium for neutron multiplication.Beryll...India has proposed the helium-cooled solid breeder blanket concept as a tritium breeding module to be tested in ITER.The module has lithium titanate for tritium breeding and beryllium for neutron multiplication.Beryllium also enhances tritium breeding.A design for the module is prepared for detailed analysis.Neutronic analysis is performed to assess the tritium breeding rate,neutron distribution,and heat distribution in the module.The tritium production distribution in submodules is evaluated to support the tritium transport analysis.The tritium breeding density in the radial direction of the module is also assessed for further optimization of the design.The heat deposition profile of the entire module is generated to support the heat removal circuit design.The estimated neutron spectrum in the radial direction also provides a more in-depth picture of the nuclear interactions inside the material zones.The total tritium produced in the HCSB module is around 13.87 mg per full day of operation of ITER,considering the 400 s ON time and 1400 s dwell time.The estimated nuclear heat load on the entire module is around 474 kW,which will be removed by the high-pressure helium cooling circuit.The heat deposition in the test blanket model(TBM)is huge(around 9 GJ)for an entire day of operation of ITER,which demonstrates the scale of power that can be produced through a fusion reactor blanket.As per the Brayton cycle,it is equivalent to 3.6 GJ of electrical energy.In terms of power production,this would be around 1655 MWh annually.The evaluation is carried out using the MCNP5 Monte Carlo radiation transport code and FEDNL 2.1 nuclear cross section data.The HCSB TBM neutronic performance demonstrates the tritium production capability and high heat deposition.展开更多
Radioactive tritium leakage from high-pressure storage vessels is a common nuclear leakage event.Different leakage conditions have different effects on tritium diffusion,resulting in different degrees of radioactive h...Radioactive tritium leakage from high-pressure storage vessels is a common nuclear leakage event.Different leakage conditions have different effects on tritium diffusion,resulting in different degrees of radioactive hazards.This study focuses on tritium leakage from high-pressure storage vessels and analyzes the influence of different leakage orifice shapes,leakage positions,and the presence of obstacles in the scene space on tritium leakage diffusion.The results show that there is little difference in the radial diffusion velocity of tritium gas along the jet axis between circular and square leakage orifices.The radial diffusion velocity of tritium gas in the long-axis direction of the rectangular leakage orifice is larger than that in the short-axis direction,and the larger the aspect ratio of the rectangle is,the greater the difference is in the diffusion velocity.In addition,leakage from the storage vessel below the air inlet is beneficial to the dilution of tritium,whereas leakage from the air vents leads to a slow decrease in the tritium concentration.The obstacles present in the tritium scene space hinder the migration of tritium gas and prolong the time for the tritium concentration to reach stabilization.This study provides a theoretical basis for the disposal of tritium in tritium leakage accidents by analyzing the influence of different leakage conditions in storage vessels on tritium gas diffusion.展开更多
Based on our previous work(Phys.Plasmas 25 012704(2018)),a fitting formula is given for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in deuterium-tritium(DT) plasmas as a function of plasm...Based on our previous work(Phys.Plasmas 25 012704(2018)),a fitting formula is given for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in deuterium-tritium(DT) plasmas as a function of plasma mass density ρ,electron temperature T_(e),and ion temperature T_(i).The formula can be used in a huge range of the plasma state,where ρ varies between 1.0 g/cc~10.0^(3) g/cc and both T_(e) and T_(i) change from 0.1 keV to 100.0 keV.Relativistic effect for electrons is investigated including the effect of the projectile recoil in the plasmas at T_(e)≥ 50.0 keV.The partition fraction for T_(e)>T_(i) is found to be close to that for T_(e)=T_(i). The comparisons with other fitting results are made at some plasma densities when T_(e)=T_(i),and the difference is explained.The fitting result is very close to the calculated one in most cases,which is convenient for the simulation of alpha heating in hot dense DT plasmas for inertial confined fusion.展开更多
Neutronics optimization calculations have been performed for the tritium breed-ing blankets with solid ceramic breeder Li2O and 1iquid eutectic breeder Lil7Pb83, respectively,based on a 2-D geometrical configuration u...Neutronics optimization calculations have been performed for the tritium breed-ing blankets with solid ceramic breeder Li2O and 1iquid eutectic breeder Lil7Pb83, respectively,based on a 2-D geometrical configuration using the Monte Carlo neutron-photon transport codeMCNP/4B. The effects of beryllium, 6Li enrichment and various structural materials on TritiumBreeding Ratio have been systematically analyzed.展开更多
Transient separation behavior in tritiated water distillation tower packed with materials having ability to adsorb water is investigated analytically and experimentally for nuclear reactor safety. Analytical equations...Transient separation behavior in tritiated water distillation tower packed with materials having ability to adsorb water is investigated analytically and experimentally for nuclear reactor safety. Analytical equations based on the stage model are set up for simulation of the transient behavior of tritium (T) separation from wastewater. It is found that a dimensionless time defined in terms of the inside vapor flow rate and the liquid holdups in tower, reboiler and condenser can correlate variations over time to achieve a steady-state T concentration. However, when mixing with different T concentrations at a feed point occurs, the transition time period becomes longer than expected. Effects of the reflux ratio, the stage separation factor and the total stage number on the transient and steady-state T concentrations are numerically calculated. Variations over time to achieve each steady-state value are compared with experimental data using a small-scale tower. Long time distillation experiment for one month has been completed, and it is confirmed that a distillation column packed with ceramic Raschig rings coated with zeolite 13X adsorbent is hardly affected by water corrosion.展开更多
基金the National Key R&D Program of China-National Magnetic Confinement Fusion Science Program(No.2017YFE0300305).
文摘China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the safety limit during tritium handling and operation in the fuel cycle system.Our tritium technology team is responsible for studying tritium transport behavior in the CFETR tritium safety confinement systems of the National Key R&D Program of China launched in 2017,and we are conducting CFETR tritium plant safety analysis by using CFD software.In this paper,the tritium migration and removal behavior were studied under a postulated accident condition for the Tokamak Exhaust Processing system of CFETR.The quantitative results of the transport behavior of tritium in the process room and glove box during the whole accident sequence(e.g.,tritium release,alarm,isolation,and tritium removal)have been presented.The results support the detailed design and engineering demonstration-related research of CFETR tritium plant.
基金supported by special project on decommission of nuclear facilities and disposal of radioactive wastes(SASTIND No.2 Department No.[2014]305)
文摘Beishan region in Gansu was the preselected area for China's high-level radioactive waste(HLW) repository. In selecting and evaluating a new dump site, the tritium study is of great significance. The Xinchang-Xiangyangshan preselected area in the Beishan area was taken as an example. This paper selects typical unit and tries to use the distribution characteristics of tritium in the soil to study the atmospheric precipitation infiltration recharge in this area. The results show: In this region, the spatial variability of the tritium content in surface soil is large; it is feasible to use bound tritium tracer method to study the theory of atmospheric precipitation infiltration recharge; the atmospheric precipitation infiltration has close relationship with the soil particle composition, salt content, mineral composition, water content and organic matter content. These results can provide important basis for developing the atmospheric precipitation infiltration recharge, groundwater numerical simulation, nuclide migration study and so on.
文摘Nowadays, isotope environmental technique tends to be used as a reconnaissance tool , both qualitative and quantitative, to calculate the aquifer parameters particularly in carbonate rock aquifers. But, the heterogeneous flow is still problematic when Lumped parameter Models are usually used to calculate the residence times and hydraulic parameters. However, Discrete State Compartment Model can provide a powerful model to heterogeneous medium. One such study was carried on in Dazha valley, where the environmental tritium was used as a tracer for determining hydrogeological parameters based on a discrete state compartment model
基金supported by the China-Japan Core University Program(Task1-2A)
文摘A non-destructive and in-situ technique for the measurement of tritium in materials, namely β-ray-induced X-ray spectrometry (BIXS), has been developed recently. In the present study a V-4Cr-4Ti alloy was pre-heated at 1000℃ for 2 h to form a recrystallization structure before the tritium absorption experiments were conducted. Firstly the hydrogen isotope gas was charazterized by means of a quadrupole mass spectrometer (QMS) and a small-sized ionization chamber. Then hydrogen isotope absorption tests of V-4Cr-4Ti alloy were performed at 400 ℃ and the atomic concentration of hydrogen isotope in V-4Cr-4Ti alloy was estimated as 0.17% with a tritium content of approximately 2.5 ppm. Experimental results indicate that BIXS is a quite useful tool for quantitatively measuring the tritium content and tritium distribution in the surface layers of vanadium alloys and no strong trapping effects of tritium exist in the pre-heated V-4Cr-4Ti alloy.
文摘Tritium concentrations in precipitation can be used as a criterion to evaluate the tritium baseline of the environment. The tritium concentration in precipitation in Shanghai during 2014-2015 was determined. Values ranged from 0.68 ± 0.04 to 4.11 ± 0.39 Bq/L, and it showed a decreasing trend compared with historical data; however,the values were slightly higher than the natural background tritium level. Additionally, the tritium concentration shows a seasonal variation: It was higher in autumn and winter and lower in summer and spring. A comparison of concentrations in precipitation in Shanghai and around the Qinshan Nuclear Power Plant reveals no correlation,implying that the nuclear power plant operations may not affect the environment of Shanghai. Thus, the raised tritium concentrations in Shanghai might be due to the effects of monsoons, spring leak, raindrop, or other activities that generate tritium there. Those activities may include chemistry research that uses tritium as a tracer.
文摘Residual thermal stress in the system is a serious problem that affects the application of tritium permeation barrier coatings in fusion reactors. The stress not only determines the adhesion between coating and substrate, but also changes the properties of the material. In this study,finite element analysis was used to investigate the relationship between the residual thermal stress and the mechanical properties of Al_2O_3 tritium penetration barrier systems. Moreover, the residual thermal stress influenced by factors such as different substrates, temperature, and substrate roughness was also analyzed. The calculation showed that the hardness and elastic modulus increased with increasing compressive stress. However, the hardness and elastic modulus decreased with increasing tensile stress. The systems composed of Al_2O_3 coatings and different substrates exhibited different trends in mechanical properties. As the temperature increased, the hardness and the elastic modulus increased in an Al_2O_3/316 L stainless steel system; the trend was opposite in an Al_2O_3/Si system.Apart from this, the roughness of the substrate surface in the system could magnify the change in hardness and elastic modulus of the coating. Results showed that all these factors led to variation in the mechanical properties of Al_2O_3 tritium permeation barrier systems. Thus, thedetailed reasons for the changes in mechanical properties of these materials need to be analyzed.
基金supported by the National Natural Science Foundation of China(Nos.11375048 and 11775053).
文摘For a more systematic understanding of the levels of environmental tritium and its behavior in East Asia,a database on environmental tritium was established based on the literature published in the past 30 years.Subsequently,the levels and behavior of the environmental tritium were further studied by statistical analyses.The results indicate that the distribution of environmental tritium is inhomogeneous and complex.In areas without nuclear facilities,the level of environmental tritium has decreased to its background level,even though a certain number of atmospheric nuclear tests were performed before 1980.In general,the level of atmospheric tritium was marginally higher than the levels in precipitation and surface water;the levels in shallow groundwater and seawater were considerably lower.Furthermore,the levels of tritium in the atmosphere,precipitation,and inland surface water were strongly correlated with latitude and distance from the coastline.In soil and living organisms,the level of tissue-free water tritium(TFWT)was comparable to the tritium levels in local rainfall,whereas the persistence of organically bound tritium(OBT)in the majority of organisms resulted in an OBT/TFWT ratio greater than one.Conversely,extremely high levels of environmental tritium were observed near certain nuclear power plants and the Fukushima accident sites.These results highlight the requirement to know the tritium baseline level and its behavior in the environment beforehand to better assess the impact of tritium discharge.Further investigations of environmental tritium in East Asia using more efficient and adequate monitoring methods are also required.
基金The project sponsored by the Scientific Research Foundation of Third Institute of Oceanography,Ministry of Natural Resources,under contract No.2020012the Join Project of Xiamen Marine Research and Development Institute under contract No.K191301.
文摘A method of measuring the tritium in seawater based on electrolytic enrichment and ultra-low background liquid scintillation counting techniques was established.The different factors influencing the detection limit were studied,including the counting time,the electrolytic volume of the seawater samples,the selection of background water,scintillation solution and their ratio.After optimizing the parameters and electrolyzing 350 mL volume of samples,the detection limit of the method was as low as 0.10 Bq/L.In order to test the optimization of system for this method,of the 84 seawater samples collected from the Arctic Ocean we measured,92%were above the detection limit(the activity of this samples ranged from 0.10 Bq/L to 1.44 Bq/L with an average of(0.30±0.24)Bq/L).In future research,if we need to accurately measure the tritium activity in samples,the volume of the electrolytic samples will be increased to further reduce the minimum detectable activity.
文摘An efficient procedure for the synthesis of agmatine labelled with tritium and deuterium is reported. The final tritiated product 4 was obtained with a specific activity of 40 Ci/mmol and a radiochemical purity of 95%.
文摘In this study,the effects of changing first wall materials and their thicknesses on a reactor were investigated to determine the displacement per atom(DPA)and gas production(helium and hydrogen)in the first wall,as well as the tritium breeding ratio(TBR)in the coolant and tritium breeding zones.Therefore,the modeling of the magnetic fusion reactor was determined based on the blanket parameters of the International Thermonuclear Experimental Reactor(ITER).Stainless steel(SS 316 LNIG),Oxide Dispersion Strengthened Steel alloy(PM2000 ODS),and China low-activation martensitic steel(CLAM)were used as the first wall(FW)materials.Fluoride family molten salt materials(FLiBe,FLiNaBe,FLiPb)and lithium oxide(LiO_(2))were considered the coolant and tritium production material in the blanket,respectively.Neutron transport calculations were performed using the wellknown 3D code MCNP5 using the continuous-energy Monte Carlo method.The built-in continuous energy nuclear and atomic data libraries along with the Evaluated Nuclear Data file(ENDF)system(ENDF/B-V and ENDF/B-VI)were used.Additionally,the activity cross-section data library CLAW-IV was used to evaluate both the DPA values and gas production of the first wall(FW)materials.An interface computer program written in the FORTRAN 90 language to evaluate the MCNP5 outputs was developed for the fusion reactor blanket.The results indicated that the best TBR value was obtained for the use of the FLiPb coolant,whereas depending on the thickness,the first wall replacement period in terms of radiation damage to all materials was between 6 and 11 years.
文摘The triple-to-double coincidence ratio (TDCR) method of liquid scintillation count- ing is an absolute measurement method of radioactivity. The formulation of the TDCR method and the established TDCR liquid scintillation counter are presented in this paper. The NIST standard reference material (SRM) of tritium water was measured to verify the performance of the TDCR liquid scintillation counter.
文摘Salt-resistant Bacillus strains, isolated from agricultural soils in Uzbekistan, were tested for degradation activity towards a mixture of polychlorinated biphenyls (PCBs) under aerobic conditions. The study employed the use of tritium labeled PCB congeners and traced the tritium label in cultures with high salt content. The experiments show that most of the selected strains were able to adsorb a part of the radioactivity, indicating transformation of the added PCBs. Gas chromatography demonstrated transformation of PCBs. The radioactive label was removed from several cultures by up to 91%, indicating also mineralization of PCBs. The study suggests that the isolated strains might be good candidates for the bioremediation of contaminated high-salt soils in Uzbekistan and other Central-Asian countries.
基金supported by National Natural Science Foundation of China(Nos.10675123,10775135 and 50871108)the Knowledge Innovation Program of Chinese Academy of Sciences
文摘Tritium permeation through the first wall (FW) from the plasma into helium coolant is evaluated for a dual-functional lithium-lead test blanket module (DFLL-TBM). The effect of the surface conditions on the plasma facing and coolant sides, both temperature gradient and beryllium layer clad on the plasma facing side, as well as trapping in defects on the tritium permeation is considered. The results show that most of the tritium implanted in FW re-entered the plasma. The plasma-driven tritium permeation is very sensitive to the surface conditions on the plasma facing side. With a higher sticking coefficient on the plasma-facing side, the tritium permeation into helium coolant is significantly reduced. The tritium permeation is strongly reduced with a beryllium layer clad on the front side of FW. The plasma driven tritium permeation will not seriously impact the tritium safety of DFLL-TBM. Based on tritium safety, it is reasonable to clothe the beryllium layer on FW and keep the surface clean to reduce the plasma driven tritium permeation.
基金The project supported by the National Nature Science Foundation of China (No. 10175067 and 10175068)
文摘Tritium self-sustainment, which will meet the fuel requirement of fusion reactor, is one of the key issues of fusion power development. The tritium breeding performances of various tritium-breeding materials are compared based on a series of neutronics calculations using three-dimensional Monte Carlo neutron-photon transport code MCNP/4C with the IAEA FENDL-2 data library. The effects of the dimensions of the tritium-breeding zone and the enrichment of 6Li on Tritium Breeding Ratio (TBR) are analyzed. The effects of Be as a neutron multiplier on TBR are also calculated.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2013GB108004,2015GB108002,and 2014GB119000)National Natural Science Foundation of China(No.11175207)
文摘Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor(CFETR) operating on a Deuterium-Tritium(D-T) fuel cycle. It is necessary to study the tritium breeding ratio(TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder(WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket,the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code(MCNP) and the fusion activation code FISPACT-2007.The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation.In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW.
文摘India has proposed the helium-cooled solid breeder blanket concept as a tritium breeding module to be tested in ITER.The module has lithium titanate for tritium breeding and beryllium for neutron multiplication.Beryllium also enhances tritium breeding.A design for the module is prepared for detailed analysis.Neutronic analysis is performed to assess the tritium breeding rate,neutron distribution,and heat distribution in the module.The tritium production distribution in submodules is evaluated to support the tritium transport analysis.The tritium breeding density in the radial direction of the module is also assessed for further optimization of the design.The heat deposition profile of the entire module is generated to support the heat removal circuit design.The estimated neutron spectrum in the radial direction also provides a more in-depth picture of the nuclear interactions inside the material zones.The total tritium produced in the HCSB module is around 13.87 mg per full day of operation of ITER,considering the 400 s ON time and 1400 s dwell time.The estimated nuclear heat load on the entire module is around 474 kW,which will be removed by the high-pressure helium cooling circuit.The heat deposition in the test blanket model(TBM)is huge(around 9 GJ)for an entire day of operation of ITER,which demonstrates the scale of power that can be produced through a fusion reactor blanket.As per the Brayton cycle,it is equivalent to 3.6 GJ of electrical energy.In terms of power production,this would be around 1655 MWh annually.The evaluation is carried out using the MCNP5 Monte Carlo radiation transport code and FEDNL 2.1 nuclear cross section data.The HCSB TBM neutronic performance demonstrates the tritium production capability and high heat deposition.
基金supported by the Youth Innovation Team of Shaanxi Universities and the Pre-research Fund(No.50926050408).
文摘Radioactive tritium leakage from high-pressure storage vessels is a common nuclear leakage event.Different leakage conditions have different effects on tritium diffusion,resulting in different degrees of radioactive hazards.This study focuses on tritium leakage from high-pressure storage vessels and analyzes the influence of different leakage orifice shapes,leakage positions,and the presence of obstacles in the scene space on tritium leakage diffusion.The results show that there is little difference in the radial diffusion velocity of tritium gas along the jet axis between circular and square leakage orifices.The radial diffusion velocity of tritium gas in the long-axis direction of the rectangular leakage orifice is larger than that in the short-axis direction,and the larger the aspect ratio of the rectangle is,the greater the difference is in the diffusion velocity.In addition,leakage from the storage vessel below the air inlet is beneficial to the dilution of tritium,whereas leakage from the air vents leads to a slow decrease in the tritium concentration.The obstacles present in the tritium scene space hinder the migration of tritium gas and prolong the time for the tritium concentration to reach stabilization.This study provides a theoretical basis for the disposal of tritium in tritium leakage accidents by analyzing the influence of different leakage conditions in storage vessels on tritium gas diffusion.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0402300 and 2017YFA0403200)the National Natural Science Foundation of China(Grant No.11574034)+1 种基金the Innovation Development Foundation of China Academy of Engineering Physics(CAEP)(Grant No.CX20200029)the Science Challenge Project(Grant Nos.JCKY201612A501)。
文摘Based on our previous work(Phys.Plasmas 25 012704(2018)),a fitting formula is given for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in deuterium-tritium(DT) plasmas as a function of plasma mass density ρ,electron temperature T_(e),and ion temperature T_(i).The formula can be used in a huge range of the plasma state,where ρ varies between 1.0 g/cc~10.0^(3) g/cc and both T_(e) and T_(i) change from 0.1 keV to 100.0 keV.Relativistic effect for electrons is investigated including the effect of the projectile recoil in the plasmas at T_(e)≥ 50.0 keV.The partition fraction for T_(e)>T_(i) is found to be close to that for T_(e)=T_(i). The comparisons with other fitting results are made at some plasma densities when T_(e)=T_(i),and the difference is explained.The fitting result is very close to the calculated one in most cases,which is convenient for the simulation of alpha heating in hot dense DT plasmas for inertial confined fusion.
文摘Neutronics optimization calculations have been performed for the tritium breed-ing blankets with solid ceramic breeder Li2O and 1iquid eutectic breeder Lil7Pb83, respectively,based on a 2-D geometrical configuration using the Monte Carlo neutron-photon transport codeMCNP/4B. The effects of beryllium, 6Li enrichment and various structural materials on TritiumBreeding Ratio have been systematically analyzed.
文摘Transient separation behavior in tritiated water distillation tower packed with materials having ability to adsorb water is investigated analytically and experimentally for nuclear reactor safety. Analytical equations based on the stage model are set up for simulation of the transient behavior of tritium (T) separation from wastewater. It is found that a dimensionless time defined in terms of the inside vapor flow rate and the liquid holdups in tower, reboiler and condenser can correlate variations over time to achieve a steady-state T concentration. However, when mixing with different T concentrations at a feed point occurs, the transition time period becomes longer than expected. Effects of the reflux ratio, the stage separation factor and the total stage number on the transient and steady-state T concentrations are numerically calculated. Variations over time to achieve each steady-state value are compared with experimental data using a small-scale tower. Long time distillation experiment for one month has been completed, and it is confirmed that a distillation column packed with ceramic Raschig rings coated with zeolite 13X adsorbent is hardly affected by water corrosion.