In this paper, the tropical air-sea interaction is discussed by using a simple air-sea coupled model, in which the inertia-gravity waves are filtered off and only the equatorial Rossby waves are reserved in both the a...In this paper, the tropical air-sea interaction is discussed by using a simple air-sea coupled model, in which the inertia-gravity waves are filtered off and only the equatorial Rossby waves are reserved in both the atmosphere and the ocean. There exist two kinds of air-sea interaction waves in the coupled model, that is, the high-frequency fast waves and the low-frequency slow waves. The phase speed of the fast waves is westward and the frequencies are close to those of the equatorial Rossby waves in the atmosphere. The slow waves propagate westward in the part of short wavelengths and eastward in that of long wavelengths. There exist instabilities for both the westward and eastward propagating slow waves. If the fast waves are filtered off, there is little effect on the slow waves which have great influence on the long range process in the tropical air-sea coupled system. According to the tropical air-sea interaction waves we obtain here, a possible explanation to the propagating process of ENSO events is given.展开更多
By means of the numerical method,the tropical air-sea interaction waves are studied.The results show that when the Kelvin waves are filtered out and only the equatorial Rossby waves are reserved both in the atmosphere...By means of the numerical method,the tropical air-sea interaction waves are studied.The results show that when the Kelvin waves are filtered out and only the equatorial Rossby waves are reserved both in the atmosphere and in the ocean,the disturbances can also propagate eastward because of the air-sea interaction.The critical wavelength of the eastward propagating waves is related to the intensity of the air-sea interaction.The stronger the air-sea interaction,the larger the eastward propagating components of the air-sea interaction waves.The results of the numerical experiments are in good agreement with those of the theoretical analysis(Chao and Zhang,1988).展开更多
The wave-CISK (cumulus convection heating feedback), the air-sea interaction and the evaporation-wind feedback are together introduced into a simple theoretical model, in order to understand their effect on driving tr...The wave-CISK (cumulus convection heating feedback), the air-sea interaction and the evaporation-wind feedback are together introduced into a simple theoretical model, in order to understand their effect on driving tropical atmospheric intraseasonal oscillation (ISO). The results showed that among the introduced dynamical processes the wave-CISK plays a major role in reducing phase speed of the wave to be closer to the observed tropical ISO. While the evaporation-wind feedback plays a major role in unstabilizing the wave. The air-sea interaction has certain effect on slowing down the phase speed of the wave. Therefore, the wave-CISK and evaporation-wind feedback can be regarded as fundamental dynamical mechanism of the tropical ISO. This study also shows that since the effects of the evaporation-wind feedback and the air-sea interaction were introduced, the excited wave is zonally dispersive, which can dynamically explain the activity feature of the observed ISO in the tropical atmosphere very well.展开更多
Collaboration of interannual variabilities and the climate mean state determines the type of E1 Nifio. Recent studies highlight the impact of a La Nifia-like mean state change, which acts to suppress the convection an...Collaboration of interannual variabilities and the climate mean state determines the type of E1 Nifio. Recent studies highlight the impact of a La Nifia-like mean state change, which acts to suppress the convection and low-level convergence over the central Pacific, on the predominance of central Pacific (CP) E1 Nifio in the most recent decade. However, how interannual variabilities affect the climate mean state has been less thoroughly investigated. Using a linear shallow-water model, the ef- fect of decadal changes of air-sea interaction on the two types of El Nifio and the climate mean state over the tropical Pacific is examined. It is demonstrated that the predominance of the eastem Pacific (EP) and CP E1 Nino is dominated mainly by relationships between anomalous wind stresses and sea surface temperature (SST). Furthermore, changes between air-sea interactions from 1980-98 to 1999-2011 prompted the generation of the La Ninalike pattern, which is similar to the background change in the most recent decade.展开更多
Based on 6-hourly sensible heat flux and latent heat flux from the NCEP Climate Forecast System Reanalysis(CFSR) and circulation data from the Japanese 25-year Reanalysis(JRA-25),the initial developing process of trop...Based on 6-hourly sensible heat flux and latent heat flux from the NCEP Climate Forecast System Reanalysis(CFSR) and circulation data from the Japanese 25-year Reanalysis(JRA-25),the initial developing process of tropical cyclone Mindulle(1005) in 2010 has been diagnosed to reveal the impact of air-sea interaction over the South China Sea(SCS) on the genesis of its incipient vortex.The results show that the incipient vortex first occurred east of the Luzon Island on 0000 UTC 20 August,suggesting that the topographic forcing of the Luzon Island for easterly winds over the western Pacific might be one of the factors responsible for the formation of the incipient vortex.During the formation stage of the incipient vortex,strong southeasterlies over the SCS caused warm water of the middle and eastern SCS to flow toward the Luzon Island due to Ekman transport resulting from wind stress,leading to an increase of the sea surface temperature and sensible heat flux into the atmosphere.Although the anomalous sensible heating favored surface pressure to reduce,it was not conducive to the increase of local vorticity associated with the vortex above the heating area because,according to the atmospheric thermal adaptation theory,the anticyclonic vorticity would be created in the lower troposphere due to the decreased vertical gradient of the sensible heating.However,the ascending motions occurred over the eastern area of the anomalous sensible heating due to the augmentation of the vorticity advection with increasing height,causing water vapor to condense in the middle and upper troposphere.In turn,cyclonic vorticity was generated in the lower troposphere due to the increased vertical gradient of the condensation latent heating,resulting in the formation and further growth of the incipient vortex.Therefore,the vorticity creation due to the condensation heating played a dominant role during the subsequent enhancing stage of the incipient vortex.展开更多
The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated th...The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.展开更多
With a simple tropical coupled ocean-atmosphere model, this paper presents an analysis aiming to understand the relative role of the meridional and zonal wind stresses in the tropical unstable air-sea interaction. The...With a simple tropical coupled ocean-atmosphere model, this paper presents an analysis aiming to understand the relative role of the meridional and zonal wind stresses in the tropical unstable air-sea interaction. The roles of the zonal wind stress, the meridional wind stress and the both are considered respectively into the coupled system. It is demonstrated that the meridional component of the wind stress does not lead to any instability under the local thermal balance assumption, but it does lead to a weak instability under the sea surface temperature advection assumption. Unstable air-sea interaction is dominated by the zonal component of the wind stress, suggesting that ignoring the meridional wind stress is approximately feasible in studying the tropical unstable air-sea interaction.展开更多
Based on the air-sea interface heat fluxes and related meteorological variables datasets recently released by Objectively Analyzed Air-Sea Fluxes(OA Flux) Project of Woods Hole Oceanographic Institution,as well as the...Based on the air-sea interface heat fluxes and related meteorological variables datasets recently released by Objectively Analyzed Air-Sea Fluxes(OA Flux) Project of Woods Hole Oceanographic Institution,as well as the outgoing longwave radiation and surface wind datasets from National Oceanic and Atmospheric Administration,the seasonal dependence of local air-sea interaction over the tropical western Pacific warm pool(referred to the region(1o-6oN,144o-154oE)) is revealed and the probable impacts of remote forcing on the air-sea interaction are examined.The results indicated the dominance of oceanic forcing with the significant impact of ENSO in March and that of atmospheric feedback without notable influence of remote forcing in June.While the interannual variability of sea surface temperature anomaly(SSTA) is larger than that of SSTA tendency when oceanic forcing is dominant,the opposite is true when atmospheric feedback is dominant.The magnitude of the oceanic forcing of the atmosphere tends to decrease in March with the occurrence of ENSO,though ENSO has little influence on the atmospheric feedback to the ocean in June.The local air-sea interaction is substantially the same before and after the removal of the effect of Indian Oceanic Dipole.The reduction of shortwave radiation fluxes into the western Pacific warm pool,due to the enhanced overlaying convection in March associated with ENSO,leads to the decline of SST tendency that will weaken the oceanic forcing of the atmosphere.展开更多
Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of t...Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.展开更多
Results of drag coefficient(CD) from field observations and laboratory wave tank experiments indicate that the operational wave model can overestimate wind energy input under high wind conditions. The wind-wave inte...Results of drag coefficient(CD) from field observations and laboratory wave tank experiments indicate that the operational wave model can overestimate wind energy input under high wind conditions. The wind-wave interaction source term in WAVEWATCH Ⅲ has been modified to examine its behavior with tropical cyclone wind forcing. Using high resolution wind input,numerical experiments under idealized wind field and tropical cyclone Bonnie(1998) were designed to evaluate performance of the modified models. Both experiments indicate that the modified models with reduced CD significantly decrease wind energy input into the wave model and then simulate lower significant wave height(SWH) than the original model. However,the effects on spatial distribution of SWH,mean wavelength,mean wave direction,and directional wave spectra are insignificant. Due to the reduced wind energy input,the idealized experiment shows that the modified models simulate lower SWH than the original model in all four quadrants. The decrease in the front quadrants is significantly larger than that in the rear quadrants;it is larger under higher winds than lower winds. The realistic experiment on tropical cyclone Bonnie shows that the modified model with the various downward trends of CD in high winds creates a simulation that agrees best with scanning radar altimeter observations.展开更多
By utilizing a 3-D atmospheric circulation resolving method, the authors studied the air-sea interactive linkages between the tropical Indian Ocean and the Pacific Ocean in 1979-2008 E1 Nifio-Southern Oscillation (E...By utilizing a 3-D atmospheric circulation resolving method, the authors studied the air-sea interactive linkages between the tropical Indian Ocean and the Pacific Ocean in 1979-2008 E1 Nifio-Southern Oscillation (ENSO) events. Their findings showed that evident 3-D gear-coupling characteristics existed in the 1979-2008 ENSO events. Their resolving analyses also suggested that the general circulation showed stronger and wider sinking motions over the eastern Indian Ocean-western Pacific during the mature phase of 1979-2008 ENSO events, compared with the vertical velocities from the U.S. National Centers for Enviornmental Prediction (NCEP) reanalysis data. With their 3-D analysis method, the vertical velocity was resolved by two components, i.e. zonal and meridional components. It was found that the zonal component of the vertical velocities showed a strong sinking motion while the meridional components showed an upward motion during the prevailing phases of the ENSO events. In the tropics, the zonal component of the vertical velocities was found greater than the meridional component, reflecting the dominant characteristics of the vertical velocity, and the overall outcomes showed a strong sinking motion, although the two components also partially offset each other in the processes. Compared with the vertical velocities from NCEP reanalysis, the vertical motions calculated with the 3-D resolving analysis method demonstrate some advantages.展开更多
Based on 25-year(1987–2011) tropical cyclone(TC) best track data, a statistical study was carried out to investigate the basic features of upper-tropospheric TC–environment interactions over the western North Pa...Based on 25-year(1987–2011) tropical cyclone(TC) best track data, a statistical study was carried out to investigate the basic features of upper-tropospheric TC–environment interactions over the western North Pacific. Interaction was defined as the absolute value of eddy momentum flux convergence(EFC) exceeding 10 m s^(-1)d^(-1). Based on this definition, it was found that 18% of all six-hourly TC samples experienced interaction. Extreme interaction cases showed that EFC can reach^120 m s^(-1)d^(-1) during the extratropical-cyclone(EC) stage, an order of magnitude larger than reported in previous studies.Composite analysis showed that positive interactions are characterized by a double-jet flow pattern, rather than the traditional trough pattern, because it is the jets that bring in large EFC from the upper-level environment to the TC center. The role of the outflow jet is also enhanced by relatively low inertial stability, as compared to the inflow jet. Among several environmental factors, it was found that extremely large EFC is usually accompanied by high inertial stability, low SST and strong vertical wind shear(VWS). Thus, the positive effect of EFC is cancelled by their negative effects. Only those samples during the EC stage, whose intensities were less dependent on VWS and the underlying SST, could survive in extremely large EFC environments, or even re-intensify. For classical TCs(not in the EC stage), it was found that environments with a moderate EFC value generally below ~25 m s^(-1)d^(-1) are more favorable for a TC's intensification than those with extremely large EFC.展开更多
In this study, tropical cyclone data from China Meteorological Administration (CMA) and the ECMWF reanalysis data for the period 1958-2001 was used to propose a possible mechanism for the impacts of air- sea interac...In this study, tropical cyclone data from China Meteorological Administration (CMA) and the ECMWF reanalysis data for the period 1958-2001 was used to propose a possible mechanism for the impacts of air- sea interaction on the activity of tropical cyclones (TCs) affecting China. The frequency of TCs affecting China over past 40 years has trended downward, while during the same period, the air sea interaction in the two key areas of the Pacific region has significantly weakened. Our diagnoses and simulations suggest that air sea interactions in the central North Pacific tropics and subtropics (Area 1) have an important role in adjusting typhoon activities in the Northwest Pacific in general, and especially in TC activity affecting China. On the contrary, impacts of the air-sea interaction in the eastern part of the South Pacific tropics (Area 2) were found to be rather limited. As both observational analysis and modeling studies show that, in the past four decades and beyond, the weakening trend of the latent heat released from Area 1 matched well with the decreasing Northwest Pacific TC frequency derived from CMA datasets. Results also showed that the weakening trend of latent heat flux in the area was most likely due to the decreasing TC frequency over the Northwest Pacific, including those affecting China. Although our preliminary analysis revealed a possible mechanism through which the air sea interaction may adjust the genesis conditions for TCs, which eventually affect China, other relevant questions, such as how TC tracks and impacts are affected by these trends, remain unanswered. Further in-depth investigations are required.展开更多
The anomalous change of two polar sea ice and tropical ocean SST is a very important index for global climate monitoring and prediction. In this paper, wave resonance principle is used to calculate month by month runn...The anomalous change of two polar sea ice and tropical ocean SST is a very important index for global climate monitoring and prediction. In this paper, wave resonance principle is used to calculate month by month running crosscouple correlation coefficient time series between sea ices in different sea areas of the two poles, as well as between themand five elements of El Nino event, to analyze their variation features. and to find out their resonance periods. The reso nance period of two waves is just the strongest interaction period.borne results are as follows: 1. The Arctic sea ice to the Pacific-side (NP11) and Atlantic-side (NP12 ) shows a mu tual strong positive-negative feedback impact with the Antarctic Ross Sea ice (SP12) in equal intensity. 2. Both NP11 andNP12 give a strong positive and negative feedback to the Antarctic Wedded Sea ice (SP13) while it is rather weak in con verse status. It means that the Arctic sea ice plays a leading and controlling role on the Wedded Sea ice. 3. SST of Nino4 area in the central equatorial Pacific has a best resonance period with SP12 in a cycle period of 132 months. It closely re lates to quasi-11-year oscillation period of both. SST of Nino 4 area also has a resonance period with SP13 in a cycle of 61months. There also exist strong interaction periods between the Antarctic sea ice and other elements of El Nino event butweaker than SST of Nino 4 area.展开更多
Based on ECMWF objective analysis data, and with use of Batterworth bandpass-filtered skill and diagnostic analysis method, the interaction characteristics of low frequency wave and mean flow in midlatitudes during t...Based on ECMWF objective analysis data, and with use of Batterworth bandpass-filtered skill and diagnostic analysis method, the interaction characteristics of low frequency wave and mean flow in midlatitudes during the winter years of 1983 / 1984 and 1986 / 1987 have been studied in this paper. The main results point out the important role of the tropical convective activity on the above mentioned interaction process.展开更多
Black holes are recognized by Newton’s gravitational theory and Einstein’s general relativity, but there is still a lack of understanding the spatial structure of events, especially the nature of event horizon. In t...Black holes are recognized by Newton’s gravitational theory and Einstein’s general relativity, but there is still a lack of understanding the spatial structure of events, especially the nature of event horizon. In this paper, a theoretical analysis is used to compare the structures of tropical cyclone in the atmosphere and black hole in the astronomy so that five results are: 1) Both of them share the similar spatial structure, with tropical cyclone and black hole having the outflow cloud shield and the horizon sphere in the central part, respectively, while four spiral material bands exist in the rotating plane around them;2) In theoretically, the energy density formed by the orthogonal interaction of the four spiral material bands is as times as the total kinetic energy of the head-on interaction;3) This region of high energy density can lead to the conversion from mass to energy and the creation of new physical states of matter, which is a black hole event;4) The outer horizon of a black hole is the outermost interface of events, or the orthogonal interaction interface of particles;5) High-speed plasma jets extended at the poles of the black hole are directly associated with the shear stress of orthogonal interaction.展开更多
Three experiments for the simulation of typhoon Sinlaku (2002) over the western North Pacific are performed in this study by using the Canadian Mesoscale Compressible Community (MC2) atmospheric model. The objecti...Three experiments for the simulation of typhoon Sinlaku (2002) over the western North Pacific are performed in this study by using the Canadian Mesoscale Compressible Community (MC2) atmospheric model. The objective of these simulations is to investigate the air-sea interaction during extreme weather conditions, and to determine the sensitivity of the typhoon evolution to the sea surface temperature (SST) cooling induced by the typhoon. It is shown from the three experiments that the surface heat fluxes have a substantial influence on the slow-moving cyclone over its lifetime. When the SST in the East China coastal ocean becomes 1℃ cooler in the simulation, less latent heat and sensible heat fluxes from the underlying ocean to the cyclone tend to reduce the typhoon intensity. The cyclone is weakened by 7 hPa at the time of its peak intensity. The SST cooling also has impacts on the vertical structure of the typhoon by weakening the warm core and drying the eye wall. With a finer horizontal resolution of (1/6)° × (1/6)°, the model produces higher surface wind, and therefore more surface heat fluxes are emitted from the ocean surface to the cyclone, in the finer-resolution MC2 grid compared with the relatively lower resolution of 0.25° × 0.25° MC2 grid.展开更多
The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is dis...The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is inter-decadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.展开更多
A singular value decomposition (SVD) analysis is carried out to reveal the relationship between the interannual variation of track and intensity of the western North Pacific tropical cyclones (WNPTCs) in the tropi...A singular value decomposition (SVD) analysis is carried out to reveal the relationship between the interannual variation of track and intensity of the western North Pacific tropical cyclones (WNPTCs) in the tropical cyclone (TC) active season (July–November) and the global net air-sea heat flux (Q net ) in the preceding season (April–June). For this purpose, a tropical cyclone track and intensity function (TIF) is defined by a combination of accumulated cyclone energy (ACE) index and a cyclone track density function. The SVD analysis reveals that the first mode is responsible for the positive correlation between the upward heat flux in the tropical central Pacific and the increased activity of western North Pacific (WNP) TIF, the second mode for the positive correlation between the upward heat flux in the North Indian Ocean and the northeastward track shift of WNPTCs and the third mode for the negative correlation between the upward heat flux in mid-latitude central Pacific and the northwest displacement of the WNP TC-active center. This suggests that Q net anomalies in some key regions have a substantial remote impact on the WNP TC activity.展开更多
This paper delineates the coupled and principal pattrns of sea surface temperture (SST) and surface wind near the South China Sea (SCS), and discusses the mechanisms of air-sea coupling near the SCS and their asspcoia...This paper delineates the coupled and principal pattrns of sea surface temperture (SST) and surface wind near the South China Sea (SCS), and discusses the mechanisms of air-sea coupling near the SCS and their asspcoiation with the Asian monsoon. Singular value decomposition (SVD) and single field principal component analysis (PCA) are applied to the so and wind anomalies from the 1979 - 1995 NCEP/NCAR reanalysis data.The leading SVD mode explains a predominant amount of squared covariance between the SST and zonal or meridional wind. During winte, the meridional wind’s relation to the SST is betterr than the relation of zonal wind to ase. Despite the large magnitude of the squared covariance between SST and zonalor meridional wind, the spatial patterns of the first mode of SVD between the SST and meridional wind are similar. They both exhibit ellipe-shaped variance with the center near the SCS and a northeast-southwest oriented main axis. The spatial patterne of the leading mode of SVD between the SST and zonal wind are also similar to a certain degree. The zonal wind is not as closely correlated to the SST as the meridional wind is. These results suggest that the meridional wind and SST are stronly coupled during the winter season, and that there is a certain coupled action system in the SCS.展开更多
文摘In this paper, the tropical air-sea interaction is discussed by using a simple air-sea coupled model, in which the inertia-gravity waves are filtered off and only the equatorial Rossby waves are reserved in both the atmosphere and the ocean. There exist two kinds of air-sea interaction waves in the coupled model, that is, the high-frequency fast waves and the low-frequency slow waves. The phase speed of the fast waves is westward and the frequencies are close to those of the equatorial Rossby waves in the atmosphere. The slow waves propagate westward in the part of short wavelengths and eastward in that of long wavelengths. There exist instabilities for both the westward and eastward propagating slow waves. If the fast waves are filtered off, there is little effect on the slow waves which have great influence on the long range process in the tropical air-sea coupled system. According to the tropical air-sea interaction waves we obtain here, a possible explanation to the propagating process of ENSO events is given.
文摘By means of the numerical method,the tropical air-sea interaction waves are studied.The results show that when the Kelvin waves are filtered out and only the equatorial Rossby waves are reserved both in the atmosphere and in the ocean,the disturbances can also propagate eastward because of the air-sea interaction.The critical wavelength of the eastward propagating waves is related to the intensity of the air-sea interaction.The stronger the air-sea interaction,the larger the eastward propagating components of the air-sea interaction waves.The results of the numerical experiments are in good agreement with those of the theoretical analysis(Chao and Zhang,1988).
基金This study is partly supported by National Key Programme for Developing Basic Sciences(G1998040903)
文摘The wave-CISK (cumulus convection heating feedback), the air-sea interaction and the evaporation-wind feedback are together introduced into a simple theoretical model, in order to understand their effect on driving tropical atmospheric intraseasonal oscillation (ISO). The results showed that among the introduced dynamical processes the wave-CISK plays a major role in reducing phase speed of the wave to be closer to the observed tropical ISO. While the evaporation-wind feedback plays a major role in unstabilizing the wave. The air-sea interaction has certain effect on slowing down the phase speed of the wave. Therefore, the wave-CISK and evaporation-wind feedback can be regarded as fundamental dynamical mechanism of the tropical ISO. This study also shows that since the effects of the evaporation-wind feedback and the air-sea interaction were introduced, the excited wave is zonally dispersive, which can dynamically explain the activity feature of the observed ISO in the tropical atmosphere very well.
基金supported by the National Program for Support of Top-notch Young Professionals,the National Basic Research Program of China (Grant Nos. 2012CB955202 and 2012CB417404)"Western Pacific Ocean System: Structure, Dynamics, and Consequences" of the Chinese Academy Sciences (WPOS+1 种基金 Grant No. XDA10010405)the National Natural Science Foundation of China (Grant No. 41176014)
文摘Collaboration of interannual variabilities and the climate mean state determines the type of E1 Nifio. Recent studies highlight the impact of a La Nifia-like mean state change, which acts to suppress the convection and low-level convergence over the central Pacific, on the predominance of central Pacific (CP) E1 Nifio in the most recent decade. However, how interannual variabilities affect the climate mean state has been less thoroughly investigated. Using a linear shallow-water model, the ef- fect of decadal changes of air-sea interaction on the two types of El Nifio and the climate mean state over the tropical Pacific is examined. It is demonstrated that the predominance of the eastem Pacific (EP) and CP E1 Nino is dominated mainly by relationships between anomalous wind stresses and sea surface temperature (SST). Furthermore, changes between air-sea interactions from 1980-98 to 1999-2011 prompted the generation of the La Ninalike pattern, which is similar to the background change in the most recent decade.
基金National Basic Research Program of China(2011CB403505,2010CB950402)National Natural Science Foundation of China(40975052,41175059)
文摘Based on 6-hourly sensible heat flux and latent heat flux from the NCEP Climate Forecast System Reanalysis(CFSR) and circulation data from the Japanese 25-year Reanalysis(JRA-25),the initial developing process of tropical cyclone Mindulle(1005) in 2010 has been diagnosed to reveal the impact of air-sea interaction over the South China Sea(SCS) on the genesis of its incipient vortex.The results show that the incipient vortex first occurred east of the Luzon Island on 0000 UTC 20 August,suggesting that the topographic forcing of the Luzon Island for easterly winds over the western Pacific might be one of the factors responsible for the formation of the incipient vortex.During the formation stage of the incipient vortex,strong southeasterlies over the SCS caused warm water of the middle and eastern SCS to flow toward the Luzon Island due to Ekman transport resulting from wind stress,leading to an increase of the sea surface temperature and sensible heat flux into the atmosphere.Although the anomalous sensible heating favored surface pressure to reduce,it was not conducive to the increase of local vorticity associated with the vortex above the heating area because,according to the atmospheric thermal adaptation theory,the anticyclonic vorticity would be created in the lower troposphere due to the decreased vertical gradient of the sensible heating.However,the ascending motions occurred over the eastern area of the anomalous sensible heating due to the augmentation of the vorticity advection with increasing height,causing water vapor to condense in the middle and upper troposphere.In turn,cyclonic vorticity was generated in the lower troposphere due to the increased vertical gradient of the condensation latent heating,resulting in the formation and further growth of the incipient vortex.Therefore,the vorticity creation due to the condensation heating played a dominant role during the subsequent enhancing stage of the incipient vortex.
基金supported jointly by the National Natural Science Foundation of China(Grant No.91337216)the Special Fund for Public Welfare Industry(Meteorology),administered by the Chinese Ministry of Finance and the Ministry of Science and Technology(Grant No.GYHY201406001)the CAS XDA(Grant No.11010402)
文摘The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.
基金National Natural Science Foundation of China (40075017)
文摘With a simple tropical coupled ocean-atmosphere model, this paper presents an analysis aiming to understand the relative role of the meridional and zonal wind stresses in the tropical unstable air-sea interaction. The roles of the zonal wind stress, the meridional wind stress and the both are considered respectively into the coupled system. It is demonstrated that the meridional component of the wind stress does not lead to any instability under the local thermal balance assumption, but it does lead to a weak instability under the sea surface temperature advection assumption. Unstable air-sea interaction is dominated by the zonal component of the wind stress, suggesting that ignoring the meridional wind stress is approximately feasible in studying the tropical unstable air-sea interaction.
基金Fundamental Research Funds for the Central Universities(WK2080000037)Natural Science Foundation of Anhui Province(1208085QD75)Open Fund of the Key Laboratory of Ocean Circulation and Waves from Chinese Academy of Sciences(KLOCAW1204)
文摘Based on the air-sea interface heat fluxes and related meteorological variables datasets recently released by Objectively Analyzed Air-Sea Fluxes(OA Flux) Project of Woods Hole Oceanographic Institution,as well as the outgoing longwave radiation and surface wind datasets from National Oceanic and Atmospheric Administration,the seasonal dependence of local air-sea interaction over the tropical western Pacific warm pool(referred to the region(1o-6oN,144o-154oE)) is revealed and the probable impacts of remote forcing on the air-sea interaction are examined.The results indicated the dominance of oceanic forcing with the significant impact of ENSO in March and that of atmospheric feedback without notable influence of remote forcing in June.While the interannual variability of sea surface temperature anomaly(SSTA) is larger than that of SSTA tendency when oceanic forcing is dominant,the opposite is true when atmospheric feedback is dominant.The magnitude of the oceanic forcing of the atmosphere tends to decrease in March with the occurrence of ENSO,though ENSO has little influence on the atmospheric feedback to the ocean in June.The local air-sea interaction is substantially the same before and after the removal of the effect of Indian Oceanic Dipole.The reduction of shortwave radiation fluxes into the western Pacific warm pool,due to the enhanced overlaying convection in March associated with ENSO,leads to the decline of SST tendency that will weaken the oceanic forcing of the atmosphere.
基金Supported by the National Natural Science Foundation of China(Nos.42122040,42076016)。
文摘Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.
基金The National Natural Science Foundation of China under contract No. 40706008the Open Research Program of the Key Laboratory of Chinese Acadeing of Sciences for Tropical Marine Environmental Dynamics under contract No. LED0606+1 种基金the Shandong Province Natural Science Foundation of China under contract No. Z2008E02the National High Technology Research and Development Program ("863" Program) of China under contract No. 2008AA09A402
文摘Results of drag coefficient(CD) from field observations and laboratory wave tank experiments indicate that the operational wave model can overestimate wind energy input under high wind conditions. The wind-wave interaction source term in WAVEWATCH Ⅲ has been modified to examine its behavior with tropical cyclone wind forcing. Using high resolution wind input,numerical experiments under idealized wind field and tropical cyclone Bonnie(1998) were designed to evaluate performance of the modified models. Both experiments indicate that the modified models with reduced CD significantly decrease wind energy input into the wave model and then simulate lower significant wave height(SWH) than the original model. However,the effects on spatial distribution of SWH,mean wavelength,mean wave direction,and directional wave spectra are insignificant. Due to the reduced wind energy input,the idealized experiment shows that the modified models simulate lower SWH than the original model in all four quadrants. The decrease in the front quadrants is significantly larger than that in the rear quadrants;it is larger under higher winds than lower winds. The realistic experiment on tropical cyclone Bonnie shows that the modified model with the various downward trends of CD in high winds creates a simulation that agrees best with scanning radar altimeter observations.
基金Key knowledge innovation research project (KZCX2-YW-Q11-01)973 project (2006CB403600)National Natural Science Foundation of China project (40805034)
文摘By utilizing a 3-D atmospheric circulation resolving method, the authors studied the air-sea interactive linkages between the tropical Indian Ocean and the Pacific Ocean in 1979-2008 E1 Nifio-Southern Oscillation (ENSO) events. Their findings showed that evident 3-D gear-coupling characteristics existed in the 1979-2008 ENSO events. Their resolving analyses also suggested that the general circulation showed stronger and wider sinking motions over the eastern Indian Ocean-western Pacific during the mature phase of 1979-2008 ENSO events, compared with the vertical velocities from the U.S. National Centers for Enviornmental Prediction (NCEP) reanalysis data. With their 3-D analysis method, the vertical velocity was resolved by two components, i.e. zonal and meridional components. It was found that the zonal component of the vertical velocities showed a strong sinking motion while the meridional components showed an upward motion during the prevailing phases of the ENSO events. In the tropics, the zonal component of the vertical velocities was found greater than the meridional component, reflecting the dominant characteristics of the vertical velocity, and the overall outcomes showed a strong sinking motion, although the two components also partially offset each other in the processes. Compared with the vertical velocities from NCEP reanalysis, the vertical motions calculated with the 3-D resolving analysis method demonstrate some advantages.
基金jointly sponsored by the National Natural Science Foundation of China(Grant Nos.41205032,41405048 and 41375050)China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201406008)the Guangdong Marine Disaster Emergency Response Technology Research Center(2012A032100004)
文摘Based on 25-year(1987–2011) tropical cyclone(TC) best track data, a statistical study was carried out to investigate the basic features of upper-tropospheric TC–environment interactions over the western North Pacific. Interaction was defined as the absolute value of eddy momentum flux convergence(EFC) exceeding 10 m s^(-1)d^(-1). Based on this definition, it was found that 18% of all six-hourly TC samples experienced interaction. Extreme interaction cases showed that EFC can reach^120 m s^(-1)d^(-1) during the extratropical-cyclone(EC) stage, an order of magnitude larger than reported in previous studies.Composite analysis showed that positive interactions are characterized by a double-jet flow pattern, rather than the traditional trough pattern, because it is the jets that bring in large EFC from the upper-level environment to the TC center. The role of the outflow jet is also enhanced by relatively low inertial stability, as compared to the inflow jet. Among several environmental factors, it was found that extremely large EFC is usually accompanied by high inertial stability, low SST and strong vertical wind shear(VWS). Thus, the positive effect of EFC is cancelled by their negative effects. Only those samples during the EC stage, whose intensities were less dependent on VWS and the underlying SST, could survive in extremely large EFC environments, or even re-intensify. For classical TCs(not in the EC stage), it was found that environments with a moderate EFC value generally below ~25 m s^(-1)d^(-1) are more favorable for a TC's intensification than those with extremely large EFC.
基金supported by the R&D Special Fund for Public Welfare Industry(meteorology)(Grant No.GYHY200806009)the National Natural Science Foundation of China(GrantNos.40775046,40730106)
文摘In this study, tropical cyclone data from China Meteorological Administration (CMA) and the ECMWF reanalysis data for the period 1958-2001 was used to propose a possible mechanism for the impacts of air- sea interaction on the activity of tropical cyclones (TCs) affecting China. The frequency of TCs affecting China over past 40 years has trended downward, while during the same period, the air sea interaction in the two key areas of the Pacific region has significantly weakened. Our diagnoses and simulations suggest that air sea interactions in the central North Pacific tropics and subtropics (Area 1) have an important role in adjusting typhoon activities in the Northwest Pacific in general, and especially in TC activity affecting China. On the contrary, impacts of the air-sea interaction in the eastern part of the South Pacific tropics (Area 2) were found to be rather limited. As both observational analysis and modeling studies show that, in the past four decades and beyond, the weakening trend of the latent heat released from Area 1 matched well with the decreasing Northwest Pacific TC frequency derived from CMA datasets. Results also showed that the weakening trend of latent heat flux in the area was most likely due to the decreasing TC frequency over the Northwest Pacific, including those affecting China. Although our preliminary analysis revealed a possible mechanism through which the air sea interaction may adjust the genesis conditions for TCs, which eventually affect China, other relevant questions, such as how TC tracks and impacts are affected by these trends, remain unanswered. Further in-depth investigations are required.
文摘The anomalous change of two polar sea ice and tropical ocean SST is a very important index for global climate monitoring and prediction. In this paper, wave resonance principle is used to calculate month by month running crosscouple correlation coefficient time series between sea ices in different sea areas of the two poles, as well as between themand five elements of El Nino event, to analyze their variation features. and to find out their resonance periods. The reso nance period of two waves is just the strongest interaction period.borne results are as follows: 1. The Arctic sea ice to the Pacific-side (NP11) and Atlantic-side (NP12 ) shows a mu tual strong positive-negative feedback impact with the Antarctic Ross Sea ice (SP12) in equal intensity. 2. Both NP11 andNP12 give a strong positive and negative feedback to the Antarctic Wedded Sea ice (SP13) while it is rather weak in con verse status. It means that the Arctic sea ice plays a leading and controlling role on the Wedded Sea ice. 3. SST of Nino4 area in the central equatorial Pacific has a best resonance period with SP12 in a cycle period of 132 months. It closely re lates to quasi-11-year oscillation period of both. SST of Nino 4 area also has a resonance period with SP13 in a cycle of 61months. There also exist strong interaction periods between the Antarctic sea ice and other elements of El Nino event butweaker than SST of Nino 4 area.
文摘Based on ECMWF objective analysis data, and with use of Batterworth bandpass-filtered skill and diagnostic analysis method, the interaction characteristics of low frequency wave and mean flow in midlatitudes during the winter years of 1983 / 1984 and 1986 / 1987 have been studied in this paper. The main results point out the important role of the tropical convective activity on the above mentioned interaction process.
文摘Black holes are recognized by Newton’s gravitational theory and Einstein’s general relativity, but there is still a lack of understanding the spatial structure of events, especially the nature of event horizon. In this paper, a theoretical analysis is used to compare the structures of tropical cyclone in the atmosphere and black hole in the astronomy so that five results are: 1) Both of them share the similar spatial structure, with tropical cyclone and black hole having the outflow cloud shield and the horizon sphere in the central part, respectively, while four spiral material bands exist in the rotating plane around them;2) In theoretically, the energy density formed by the orthogonal interaction of the four spiral material bands is as times as the total kinetic energy of the head-on interaction;3) This region of high energy density can lead to the conversion from mass to energy and the creation of new physical states of matter, which is a black hole event;4) The outer horizon of a black hole is the outermost interface of events, or the orthogonal interaction interface of particles;5) High-speed plasma jets extended at the poles of the black hole are directly associated with the shear stress of orthogonal interaction.
文摘Three experiments for the simulation of typhoon Sinlaku (2002) over the western North Pacific are performed in this study by using the Canadian Mesoscale Compressible Community (MC2) atmospheric model. The objective of these simulations is to investigate the air-sea interaction during extreme weather conditions, and to determine the sensitivity of the typhoon evolution to the sea surface temperature (SST) cooling induced by the typhoon. It is shown from the three experiments that the surface heat fluxes have a substantial influence on the slow-moving cyclone over its lifetime. When the SST in the East China coastal ocean becomes 1℃ cooler in the simulation, less latent heat and sensible heat fluxes from the underlying ocean to the cyclone tend to reduce the typhoon intensity. The cyclone is weakened by 7 hPa at the time of its peak intensity. The SST cooling also has impacts on the vertical structure of the typhoon by weakening the warm core and drying the eye wall. With a finer horizontal resolution of (1/6)° × (1/6)°, the model produces higher surface wind, and therefore more surface heat fluxes are emitted from the ocean surface to the cyclone, in the finer-resolution MC2 grid compared with the relatively lower resolution of 0.25° × 0.25° MC2 grid.
基金This study was supported by the project of the National Natural Science Foundation of China"Response of inter-decadal variability of South China Sea summer monsoon to the whole globe variability”under contract number 9021l010“Interannual to interdecadal variability in circulation in the tropical Pa-cific Ocean”under contract number 40136010.
文摘The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is inter-decadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.
基金The National Key Basic Research Program of China under Grant No.2009CB421404the National Natural Science Foundation of China-Regional Cooperation Project under Grant No.40921160379+1 种基金the National Natural Science foundation of China under Grant No.40730951the Fundamental Research Funds for the Central Universities under Grant No.11lgjc10
文摘A singular value decomposition (SVD) analysis is carried out to reveal the relationship between the interannual variation of track and intensity of the western North Pacific tropical cyclones (WNPTCs) in the tropical cyclone (TC) active season (July–November) and the global net air-sea heat flux (Q net ) in the preceding season (April–June). For this purpose, a tropical cyclone track and intensity function (TIF) is defined by a combination of accumulated cyclone energy (ACE) index and a cyclone track density function. The SVD analysis reveals that the first mode is responsible for the positive correlation between the upward heat flux in the tropical central Pacific and the increased activity of western North Pacific (WNP) TIF, the second mode for the positive correlation between the upward heat flux in the North Indian Ocean and the northeastward track shift of WNPTCs and the third mode for the negative correlation between the upward heat flux in mid-latitude central Pacific and the northwest displacement of the WNP TC-active center. This suggests that Q net anomalies in some key regions have a substantial remote impact on the WNP TC activity.
文摘This paper delineates the coupled and principal pattrns of sea surface temperture (SST) and surface wind near the South China Sea (SCS), and discusses the mechanisms of air-sea coupling near the SCS and their asspcoiation with the Asian monsoon. Singular value decomposition (SVD) and single field principal component analysis (PCA) are applied to the so and wind anomalies from the 1979 - 1995 NCEP/NCAR reanalysis data.The leading SVD mode explains a predominant amount of squared covariance between the SST and zonal or meridional wind. During winte, the meridional wind’s relation to the SST is betterr than the relation of zonal wind to ase. Despite the large magnitude of the squared covariance between SST and zonalor meridional wind, the spatial patterns of the first mode of SVD between the SST and meridional wind are similar. They both exhibit ellipe-shaped variance with the center near the SCS and a northeast-southwest oriented main axis. The spatial patterne of the leading mode of SVD between the SST and zonal wind are also similar to a certain degree. The zonal wind is not as closely correlated to the SST as the meridional wind is. These results suggest that the meridional wind and SST are stronly coupled during the winter season, and that there is a certain coupled action system in the SCS.