A non-parametric method is used in this study to analyze and predict short-term rainfall due to tropical cyclones(TCs) in a coastal meteorological station. All 427 TCs during 1953-2011 which made landfall along the So...A non-parametric method is used in this study to analyze and predict short-term rainfall due to tropical cyclones(TCs) in a coastal meteorological station. All 427 TCs during 1953-2011 which made landfall along the Southeast China coast with a distance less than 700 km to a certain meteorological station- Shenzhen are analyzed and grouped according to their landfalling direction, distance and intensity. The corresponding daily rainfall records at Shenzhen Meteorological Station(SMS) during TCs landfalling period(a couple of days before and after TC landfall) are collected. The maximum daily rainfall(R-24) and maximum 3-day accumulative rainfall(R-72) records at SMS for each TC category are analyzed by a non-parametric statistical method, percentile estimation. The results are plotted by statistical boxplots, expressing in probability of precipitation. The performance of the statistical boxplots is evaluated to forecast the short-term rainfall at SMS during the TC seasons in 2012 and 2013. Results show that the boxplot scheme can be used as a valuable reference to predict the short-term rainfall at SMS due to TCs landfalling along the Southeast China coast.展开更多
Following previous studies of the rainfall forecast in Shenzhen owing to landfalling tropical cyclones(TCs),a nonparametric statistical scheme based on the classification of the landfalling TCs is applied to analyze a...Following previous studies of the rainfall forecast in Shenzhen owing to landfalling tropical cyclones(TCs),a nonparametric statistical scheme based on the classification of the landfalling TCs is applied to analyze and forecast the rainfall induced by landfalling TCs in the coastal area of Guangdong province,China.All the TCs landfalling with the distance less than 700 kilometers to the 8 coastal stations in Guangdong province during 1950—2013 are categorized according to their landfalling position and intensity.The daily rainfall records of all the 8 meteorological stations are obtained and analyzed.The maximum daily rainfall and the maximum 3 days’accumulated rainfall at the 8 coastal stations induced by each category of TCs during the TC landfall period(a couple of days before and after TC landfalling time)from 1950 to 2013 are computed by the percentile estimation and illustrated by boxplots.These boxplots can be used to estimate the rainfall induced by landfalling TC of the same category in the future.The statistical boxplot scheme is further coupled with the model outputs from the European Centre for Medium-Range Weather Forecasts(ECMWF)to predict the rainfall induced by landfalling TCs along the coastal area.The TCs landfalling in south China from 2014 to 2017 and the corresponding rainfall at the 8 stations area are used to evaluate the performance of these boxplots and coupled boxplots schemes.Results show that the statistical boxplots scheme and coupled boxplots scheme can perform better than ECMWF model in the operational rainfall forecast along the coastal area in south China.展开更多
基金The Innovation of Science and Technology Commission of Shenzhen Municipality(JCYJ20120617115926138)Scientific and Technological Project for Regional Meteorological Center in South China,Chinese Meteorological Administration(GRMC2012M15)
文摘A non-parametric method is used in this study to analyze and predict short-term rainfall due to tropical cyclones(TCs) in a coastal meteorological station. All 427 TCs during 1953-2011 which made landfall along the Southeast China coast with a distance less than 700 km to a certain meteorological station- Shenzhen are analyzed and grouped according to their landfalling direction, distance and intensity. The corresponding daily rainfall records at Shenzhen Meteorological Station(SMS) during TCs landfalling period(a couple of days before and after TC landfall) are collected. The maximum daily rainfall(R-24) and maximum 3-day accumulative rainfall(R-72) records at SMS for each TC category are analyzed by a non-parametric statistical method, percentile estimation. The results are plotted by statistical boxplots, expressing in probability of precipitation. The performance of the statistical boxplots is evaluated to forecast the short-term rainfall at SMS during the TC seasons in 2012 and 2013. Results show that the boxplot scheme can be used as a valuable reference to predict the short-term rainfall at SMS due to TCs landfalling along the Southeast China coast.
基金Key Research and Development Projects in Guangdong Province(2019B111101002)Program of Science,Technology and Innovation Commission of Shenzhen Municipality(JCYJ20170413164957461,GGFW2017073114031767)
文摘Following previous studies of the rainfall forecast in Shenzhen owing to landfalling tropical cyclones(TCs),a nonparametric statistical scheme based on the classification of the landfalling TCs is applied to analyze and forecast the rainfall induced by landfalling TCs in the coastal area of Guangdong province,China.All the TCs landfalling with the distance less than 700 kilometers to the 8 coastal stations in Guangdong province during 1950—2013 are categorized according to their landfalling position and intensity.The daily rainfall records of all the 8 meteorological stations are obtained and analyzed.The maximum daily rainfall and the maximum 3 days’accumulated rainfall at the 8 coastal stations induced by each category of TCs during the TC landfall period(a couple of days before and after TC landfalling time)from 1950 to 2013 are computed by the percentile estimation and illustrated by boxplots.These boxplots can be used to estimate the rainfall induced by landfalling TC of the same category in the future.The statistical boxplot scheme is further coupled with the model outputs from the European Centre for Medium-Range Weather Forecasts(ECMWF)to predict the rainfall induced by landfalling TCs along the coastal area.The TCs landfalling in south China from 2014 to 2017 and the corresponding rainfall at the 8 stations area are used to evaluate the performance of these boxplots and coupled boxplots schemes.Results show that the statistical boxplots scheme and coupled boxplots scheme can perform better than ECMWF model in the operational rainfall forecast along the coastal area in south China.