In this paper,the effects of sea spray on tropical cyclone(TC)structure and intensity variation are evaluated through numerical simulations using an advanced sea-spray parameterization from the National Oceanic and At...In this paper,the effects of sea spray on tropical cyclone(TC)structure and intensity variation are evaluated through numerical simulations using an advanced sea-spray parameterization from the National Oceanic and Atmospheric Administration/Earth System Research Laboratory(NOAA/ESRL),which is incorporated in the idealized Advanced Research version of the Weather Research and Forecast (WRF-ARW)model.The effect of sea spray on TC boundary-layer structure is also analyzed.The results show that there is a significant increase in TC intensity when its boundary-layer wind includes the radial and tangential winds,their structure change,and the total surface wind speed change.Diagnosis of the vorticity budget shows that an increase of convergence in TC boundary layer enhances TC vorticity due to the dynamic effect of sea spay.The main kinematic effect of the friction velocity reduction by sea spray produces an increment of large-scale convergence in the TC boundary layer,while the radial and tangential winds significantly increase with an increment of the horizontal gradient maximum of the radial wind, resulting in a final increase in the simulated TC intensity.The surface enthalpy flux enlarges TC intensity and reduces storm structure change to some degree,which results in a secondary thermodynamic impact on TC intensification.Implications of the new interpretation of sea-spray effects on TC intensification are also discussed.展开更多
A quasi-geostrophic barotropic vorticity equation model is used to simulate the influences of topographic forcing and land friction on landfall tropical cyclone track and intensity. The simulation results show that tr...A quasi-geostrophic barotropic vorticity equation model is used to simulate the influences of topographic forcing and land friction on landfall tropical cyclone track and intensity. The simulation results show that tropical cyclone track may have sudden deflection when the action of topographic friction dissipation is considered, and sudden deflection of the track is easy to happen and sudden change of tropical cyclone intensity is not clear when the intensity of tropical cyclone is weak and the land friction is strong. The land friction may be an important factor that causes sudden deflection of tropical cyclone track around landfall.展开更多
This study examines the long-term change in the threat of landfalling tropical cyclones(TCs) in East Asia over the period 1975–2020 with a focus on rapidly intensifying(RI) TCs. The increase in the annual number of R...This study examines the long-term change in the threat of landfalling tropical cyclones(TCs) in East Asia over the period 1975–2020 with a focus on rapidly intensifying(RI) TCs. The increase in the annual number of RI-TCs over the western North Pacific and the northwestward shift of their genesis location lead to an increasing trend in the annual number of landfalling RI-TCs along the coast of East Asia. The annual power dissipation index(PDI), a measure of the destructive potential of RI-TCs at landfall, also shows a significant increasing trend due to increases in the annual frequency and mean landfall intensity of landfalling RI-TCs. The increase in mean landfall intensity is related to a higher lifetime maximum intensity(LMI) and the LMI location of the landfalling RI-TCs being closer to the coast. The increase in the annual PDI of East Asia is mainly associated with landfalling TCs in the southern(the Philippines, South China, and Vietnam) and northern parts(Japan and the Korean Peninsula) of East Asia due to long-term changes in vertical wind shear and TC heat potential. The former leads to a northwestward shift of favorable environments for TC genesis and intensification, resulting in the northwestward shift in the genesis, RI, and LMI locations of RI-TCs. The latter provides more heat energy from the ocean for TC intensification, increasing its chances to undergo RI.展开更多
Using Joint Warning Typhoon Center (JTWC) best track data during the period 1948-2010, decadal and interdecadal changes of annual category 4 and 5 tropical cyclone (TC) frequency in the western North Pacific basin...Using Joint Warning Typhoon Center (JTWC) best track data during the period 1948-2010, decadal and interdecadal changes of annual category 4 and 5 tropical cyclone (TC) frequency in the western North Pacific basin were examined. By allowing all of the observed TCs in the JTWC dataset to move along the observed TC tracks in a TC intensity model, the annual category 4 and 5 TC frequency was simulated. The results agreed well with observations when the TC intensity prior to 1973 was adjusted based on time-dependent biases due to changes in measurement and reporting practices. The simulated and adjusted time series showed significant decadal (12-18 years) variability, while the interdecadal (18-32 years) variability was found to be statistically insignificant. Numerical simulations indicated that changes in TC tracks are the most important factor for the decadal variability in the category 4 and 5 TC frequency in the western North Pacific basin, while a combined effect of changes in SST and vertical wind shear also contributes to the decadal variability. Further analysis suggested that the active phase of category 4 and 5 TCs is closely associated with an eastward shift in the TC formation locations, which allows more TCs to follow a longer journey, favoring the development of category 4 and 5 TCs. The active phase corresponds with the SST warming over the tropical central and eastern Pacific and the eastward extension of the monsoon trough, thus leading to the eastward shift in TC formation locations.展开更多
In order to investigate the different thermodynamic mechanisms between rapid intensifying (RI) and rapid weakening (RW) tropical cyclones (TCs), the thermodynamic structures of two sets of composite TCs are anal...In order to investigate the different thermodynamic mechanisms between rapid intensifying (RI) and rapid weakening (RW) tropical cyclones (TCs), the thermodynamic structures of two sets of composite TCs are analyzed based on the complete-form vertical vorticity tendency equation and the NCEP/NCAR reanalysis data. Each composite is composed of five TCs, whose intensities change rapidly over the coastal waters of China. The results show that the maximum apparent heating source Q1 exists in both the upper and lower troposphere near the RI TC center, and Q1 gets stronger at the lower level during the TC intensification period. But for the RW TC, the maximum Q1 exists at the middle level near the TC center, and Q1 gets weaker while the TC weakens. The maximum apparent moisture sink Q2 lies in the mid troposphere. Q2 becomes stronger and its peak-value height rises while TC intensifies, and vice versa. The increase of diabatic heating with height near the TC center in the mid-upper troposphere and the increase of vertical inhomogeneous heating near the TC center in the lower troposphere are both favorable to the TCs' rapid intensification; otherwise, the intensity of the TC decreases rapidly.展开更多
This review summarizes experiences at operational centers to forecast tropical cyclone(TC) intensity change as presented to the International Workshop on Tropical Cyclones(IWTC-9) in Hawaii in 2018. Some operational f...This review summarizes experiences at operational centers to forecast tropical cyclone(TC) intensity change as presented to the International Workshop on Tropical Cyclones(IWTC-9) in Hawaii in 2018. Some operational forecast centers have been able to leverage advances in intensity guidance to increase forecast skill, albeit incrementally, while others have struggled to make any significant improvements. Rapid intensity changes continue to present major challenges to operational centers and individual difficult cases illustrate the forecasting challenges.It is noteworthy that the realization of a recommendation from IWTC-8 in 2014, to adapt guidance initially developed for the North Atlantic and North-East Pacific to other basins, has led to improved forecast skill of some agencies. Recent worldwide difficult cases are presented so that the research community can further investigate, potentially leading to improved intensity forecasts when similar cases are observed in the future.展开更多
This review summarizes techniques used by operational centers to forecast tropical cyclone intensity change as presented to the International Workshop on Tropical Cyclones(IWTC-9)in Hawaii in 2018.Recent advances and ...This review summarizes techniques used by operational centers to forecast tropical cyclone intensity change as presented to the International Workshop on Tropical Cyclones(IWTC-9)in Hawaii in 2018.Recent advances and major changes over the past four years are presented,with a special focus on forecasting rapid intensity changes.Although intensity change remains one of the most difficult aspects of tropical cyclone forecasting,objective guidance has shown some improvement.The greatest improvements are realized when consensus methods are utilized,especially those that blend statistical-dynamical based guidance with dynamical ocean-coupled regional models.These models become even more skillful when initialized with inner core observational data.Continued improvement and availability of intensity guidance along with associated forecaster training are expected to deliver forecasting improvements in the future.展开更多
When Typhoon Toraji(2001)reached the Bohai Gulf during 1-2 August 2001,a heavy rainfall event occurred over Shandong province in China along the gulf.The Advanced Research version of the Weather Research and Forecast(...When Typhoon Toraji(2001)reached the Bohai Gulf during 1-2 August 2001,a heavy rainfall event occurred over Shandong province in China along the gulf.The Advanced Research version of the Weather Research and Forecast(WRF-ARW)model was used to explore possible effects of environmental factors,including effects of moisture transportation,upper-level trough interaction with potential vorticity anomalies,tropical cyclone(TC)remnant circulation,and TC boundary-layer process on the re-intensification of Typhoon Toraji,which re-entered the Bohai Gulf after having made a landfall.The National Centers for Environmental Prediction(NCEP)global final(FNL)analysis provided both the initial and lateral boundary conditions for the WRF-ARW model.The model was initialized at 1200 UTC on 31 July and integrated until 1200 UTC on 3 August 2001,during which Toraji remnant experienced the extratropical transition and re-intensification.Five numerical experiments were performed in this study,including one control and four sensitivity experiments.In the control experiment,the simulated typhoon had a track and intensity change similar to those observed.The results from three sensitivity experiments showed that the moisture transfer by a southwesterly lower-level jet,a low vortex to the northeast of China,and the presence of Typhoon Toraji all played important roles in simulated heavy rainfall over Shandong and remnant re-intensification over the sea,which are consistent with the observation.One of the tests illustrated that the local boundary layer forcing played a secondary role in the TC intensity change over the sea.展开更多
This review prepared for the fourth International Workshop on Tropical Cyclone Landfall Processes(IWTCLP-4) summarizes the most recent(2015-2017) theoretical and practical knowledge in the field of tropical cyclone(TC...This review prepared for the fourth International Workshop on Tropical Cyclone Landfall Processes(IWTCLP-4) summarizes the most recent(2015-2017) theoretical and practical knowledge in the field of tropical cyclone(TC) track, intensity, and structure rapid changes at or near landfall. Although the focus of IWTCLPIV was on landfall, this summary necessarily embraces the characteristics of storms during their course over the ocean prior to and leading up to landfall. In the past few years, extremely valuable observational datasets have been collected for TC forecasting guidance and research studies using both aircraft reconnaissance and new geostationary or low-earth orbiting satellites at high temporal and spatial resolution. Track deflections for systems near complex topography such as that of Taiwan and La Réunion have been further investigated, and advanced numerical models with high spatial resolution necessary to predict the interaction of the TC circulation with steep island topography have been developed. An analog technique has been designed to meet the need for longer range landfall intensity forecast guidance that will provide more time for emergency preparedness. Probabilistic track and intensity forecasts have also been developed to better communicate on forecast uncertainty. Operational practices of several TC forecast centers are described herein and some challenges regarding forecasts and warnings for TCs making landfall are identified. This review concludes with insights from both researchers and forecasters regarding future directions to improve predictions of TC track, intensity, and structure at landfall.展开更多
Forecasting the rapid intensification of tropical cyclones over offshore areas remains difficult. In this article,the Weather Research and Forecast(WRF) model was used to study the rapid intensification of Typhoon Hai...Forecasting the rapid intensification of tropical cyclones over offshore areas remains difficult. In this article,the Weather Research and Forecast(WRF) model was used to study the rapid intensification of Typhoon Haikui(1211)off the shore of China. After successful simulation of the intensity change and track of the typhoon, the model output was further analyzed to determine the mechanism of the rapid change in intensity. The results indicated that a remarkable increase in low-level moisture transportation toward the inner core, favorable large-scale background field with low-level convergence, and high-level divergence played key roles in the rapid intensification of Typhoon Haikui in which high-level divergence could be used as an indicator for the rapid intensity change of Typhoon Haikui approximately 6 h in advance. An analysis of the typhoon structure revealed that Typhoon Haikui was structurally symmetric during the rapid intensification and the range of the eyewall was small in the low level but extended outward in the high level. In addition, the vertically ascending motion, the radial and tangential along wind speeds increased with increasing typhoon intensity, especially during the process of rapid intensification. Furthermore, the intensity of the warm core of the typhoon increased during the intensification process with the warm core extending outward and toward the lower layer. All of the above structural changes contributed to the maintenance and development of typhoon intensity.展开更多
Two different initialization schemes for tropical cyclone(TC)prediction in numerical models are evaluated based on a case study of Typhoon Lekima(2019).The first is a dynamical initialization(DI)scheme where the axisy...Two different initialization schemes for tropical cyclone(TC)prediction in numerical models are evaluated based on a case study of Typhoon Lekima(2019).The first is a dynamical initialization(DI)scheme where the axisymmetric TC vortex in the initial conditions is spun up through the 6-h cycle runs before the initial forecast time.The second scheme is a bogussing scheme where the analysis TC vortex is replaced by a synthetic Rankine vortex.Results show that although both initialization schemes can help improve the simulated rapid intensification(RI)of Lekima,the simulation employing the DI scheme(DIS)reproduces better the RI onset and intensification rate than that employing the bogussing scheme(BOG).Further analyses show the cycle runs of DI help establish a realistic TC structure with stronger secondary circulation than those in the control run and BOG,leading to fast vortex spinup and contraction of the radius of maximum wind(RMW).The resultant strong inner-core primary circulation favors precession of the midlevel vortex under the moderate vertical wind shear(VWS)and thus helps vortex alignment,contributing to an earlier RI onset.Afterwards,the decreased vertical shear and the stronger convection inside the RMW support the persistent RI of Lekima in DIS.In contrast,the reduced VWS is not well captured and the inner-core convection is weaker and resides farther away from the TC center in BOG,leading to slower intensification.The results imply that the DI effectively improves the prediction of the inner-core process,which is crucial to the RI forecast.展开更多
基金National Basic Research Program of China(973 Program)(2009CB421500)Natural Science Foundation of China(40875039,40730948,40921160381)Projects for Public Welfare(Meteorology)of China (GYHY201006008)
文摘In this paper,the effects of sea spray on tropical cyclone(TC)structure and intensity variation are evaluated through numerical simulations using an advanced sea-spray parameterization from the National Oceanic and Atmospheric Administration/Earth System Research Laboratory(NOAA/ESRL),which is incorporated in the idealized Advanced Research version of the Weather Research and Forecast (WRF-ARW)model.The effect of sea spray on TC boundary-layer structure is also analyzed.The results show that there is a significant increase in TC intensity when its boundary-layer wind includes the radial and tangential winds,their structure change,and the total surface wind speed change.Diagnosis of the vorticity budget shows that an increase of convergence in TC boundary layer enhances TC vorticity due to the dynamic effect of sea spay.The main kinematic effect of the friction velocity reduction by sea spray produces an increment of large-scale convergence in the TC boundary layer,while the radial and tangential winds significantly increase with an increment of the horizontal gradient maximum of the radial wind, resulting in a final increase in the simulated TC intensity.The surface enthalpy flux enlarges TC intensity and reduces storm structure change to some degree,which results in a secondary thermodynamic impact on TC intensification.Implications of the new interpretation of sea-spray effects on TC intensification are also discussed.
基金Model System for Monitoring the Interactions Between Air-Sea-Land in Coastal Area and Predicting Disaster-Causing Weather by China Meteorological Administration
文摘A quasi-geostrophic barotropic vorticity equation model is used to simulate the influences of topographic forcing and land friction on landfall tropical cyclone track and intensity. The simulation results show that tropical cyclone track may have sudden deflection when the action of topographic friction dissipation is considered, and sudden deflection of the track is easy to happen and sudden change of tropical cyclone intensity is not clear when the intensity of tropical cyclone is weak and the land friction is strong. The land friction may be an important factor that causes sudden deflection of tropical cyclone track around landfall.
基金supported by the Research Grants Council of Hong Kong Grant City U ECity U101/16。
文摘This study examines the long-term change in the threat of landfalling tropical cyclones(TCs) in East Asia over the period 1975–2020 with a focus on rapidly intensifying(RI) TCs. The increase in the annual number of RI-TCs over the western North Pacific and the northwestward shift of their genesis location lead to an increasing trend in the annual number of landfalling RI-TCs along the coast of East Asia. The annual power dissipation index(PDI), a measure of the destructive potential of RI-TCs at landfall, also shows a significant increasing trend due to increases in the annual frequency and mean landfall intensity of landfalling RI-TCs. The increase in mean landfall intensity is related to a higher lifetime maximum intensity(LMI) and the LMI location of the landfalling RI-TCs being closer to the coast. The increase in the annual PDI of East Asia is mainly associated with landfalling TCs in the southern(the Philippines, South China, and Vietnam) and northern parts(Japan and the Korean Peninsula) of East Asia due to long-term changes in vertical wind shear and TC heat potential. The former leads to a northwestward shift of favorable environments for TC genesis and intensification, resulting in the northwestward shift in the genesis, RI, and LMI locations of RI-TCs. The latter provides more heat energy from the ocean for TC intensification, increasing its chances to undergo RI.
基金jointly supported by the National Natural Science Foundation of China(Grant No.41305050)the Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.11KJB170009)+3 种基金the Typhoon Research Project(Grant No.2009CB421503)the Social Commonwealth Research Program of the Ministry of Science and Technology of the People’s Republic of China(Grant No.GYHY200806009)the Key Laboratory of Meteorological Disaster of the Ministry of Education Program(Grant No.KLME1204)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Using Joint Warning Typhoon Center (JTWC) best track data during the period 1948-2010, decadal and interdecadal changes of annual category 4 and 5 tropical cyclone (TC) frequency in the western North Pacific basin were examined. By allowing all of the observed TCs in the JTWC dataset to move along the observed TC tracks in a TC intensity model, the annual category 4 and 5 TC frequency was simulated. The results agreed well with observations when the TC intensity prior to 1973 was adjusted based on time-dependent biases due to changes in measurement and reporting practices. The simulated and adjusted time series showed significant decadal (12-18 years) variability, while the interdecadal (18-32 years) variability was found to be statistically insignificant. Numerical simulations indicated that changes in TC tracks are the most important factor for the decadal variability in the category 4 and 5 TC frequency in the western North Pacific basin, while a combined effect of changes in SST and vertical wind shear also contributes to the decadal variability. Further analysis suggested that the active phase of category 4 and 5 TCs is closely associated with an eastward shift in the TC formation locations, which allows more TCs to follow a longer journey, favoring the development of category 4 and 5 TCs. The active phase corresponds with the SST warming over the tropical central and eastern Pacific and the eastward extension of the monsoon trough, thus leading to the eastward shift in TC formation locations.
基金Supported by the National Natural Science Foundation of China (40875030, 40730948, and 40575018)China Meteorogical Administration Climate Change Program (CCSF2007-13)
文摘In order to investigate the different thermodynamic mechanisms between rapid intensifying (RI) and rapid weakening (RW) tropical cyclones (TCs), the thermodynamic structures of two sets of composite TCs are analyzed based on the complete-form vertical vorticity tendency equation and the NCEP/NCAR reanalysis data. Each composite is composed of five TCs, whose intensities change rapidly over the coastal waters of China. The results show that the maximum apparent heating source Q1 exists in both the upper and lower troposphere near the RI TC center, and Q1 gets stronger at the lower level during the TC intensification period. But for the RW TC, the maximum Q1 exists at the middle level near the TC center, and Q1 gets weaker while the TC weakens. The maximum apparent moisture sink Q2 lies in the mid troposphere. Q2 becomes stronger and its peak-value height rises while TC intensifies, and vice versa. The increase of diabatic heating with height near the TC center in the mid-upper troposphere and the increase of vertical inhomogeneous heating near the TC center in the lower troposphere are both favorable to the TCs' rapid intensification; otherwise, the intensity of the TC decreases rapidly.
文摘This review summarizes experiences at operational centers to forecast tropical cyclone(TC) intensity change as presented to the International Workshop on Tropical Cyclones(IWTC-9) in Hawaii in 2018. Some operational forecast centers have been able to leverage advances in intensity guidance to increase forecast skill, albeit incrementally, while others have struggled to make any significant improvements. Rapid intensity changes continue to present major challenges to operational centers and individual difficult cases illustrate the forecasting challenges.It is noteworthy that the realization of a recommendation from IWTC-8 in 2014, to adapt guidance initially developed for the North Atlantic and North-East Pacific to other basins, has led to improved forecast skill of some agencies. Recent worldwide difficult cases are presented so that the research community can further investigate, potentially leading to improved intensity forecasts when similar cases are observed in the future.
文摘This review summarizes techniques used by operational centers to forecast tropical cyclone intensity change as presented to the International Workshop on Tropical Cyclones(IWTC-9)in Hawaii in 2018.Recent advances and major changes over the past four years are presented,with a special focus on forecasting rapid intensity changes.Although intensity change remains one of the most difficult aspects of tropical cyclone forecasting,objective guidance has shown some improvement.The greatest improvements are realized when consensus methods are utilized,especially those that blend statistical-dynamical based guidance with dynamical ocean-coupled regional models.These models become even more skillful when initialized with inner core observational data.Continued improvement and availability of intensity guidance along with associated forecaster training are expected to deliver forecasting improvements in the future.
基金National Basic Research Program of China(973 Program)(2009CB421500)Natural Science Foundation of China(40875039,40730948,40921160381)Projects for Public Welfare(Meteorology)of China (GYHY201006008)
文摘When Typhoon Toraji(2001)reached the Bohai Gulf during 1-2 August 2001,a heavy rainfall event occurred over Shandong province in China along the gulf.The Advanced Research version of the Weather Research and Forecast(WRF-ARW)model was used to explore possible effects of environmental factors,including effects of moisture transportation,upper-level trough interaction with potential vorticity anomalies,tropical cyclone(TC)remnant circulation,and TC boundary-layer process on the re-intensification of Typhoon Toraji,which re-entered the Bohai Gulf after having made a landfall.The National Centers for Environmental Prediction(NCEP)global final(FNL)analysis provided both the initial and lateral boundary conditions for the WRF-ARW model.The model was initialized at 1200 UTC on 31 July and integrated until 1200 UTC on 3 August 2001,during which Toraji remnant experienced the extratropical transition and re-intensification.Five numerical experiments were performed in this study,including one control and four sensitivity experiments.In the control experiment,the simulated typhoon had a track and intensity change similar to those observed.The results from three sensitivity experiments showed that the moisture transfer by a southwesterly lower-level jet,a low vortex to the northeast of China,and the presence of Typhoon Toraji all played important roles in simulated heavy rainfall over Shandong and remnant re-intensification over the sea,which are consistent with the observation.One of the tests illustrated that the local boundary layer forcing played a secondary role in the TC intensity change over the sea.
文摘This review prepared for the fourth International Workshop on Tropical Cyclone Landfall Processes(IWTCLP-4) summarizes the most recent(2015-2017) theoretical and practical knowledge in the field of tropical cyclone(TC) track, intensity, and structure rapid changes at or near landfall. Although the focus of IWTCLPIV was on landfall, this summary necessarily embraces the characteristics of storms during their course over the ocean prior to and leading up to landfall. In the past few years, extremely valuable observational datasets have been collected for TC forecasting guidance and research studies using both aircraft reconnaissance and new geostationary or low-earth orbiting satellites at high temporal and spatial resolution. Track deflections for systems near complex topography such as that of Taiwan and La Réunion have been further investigated, and advanced numerical models with high spatial resolution necessary to predict the interaction of the TC circulation with steep island topography have been developed. An analog technique has been designed to meet the need for longer range landfall intensity forecast guidance that will provide more time for emergency preparedness. Probabilistic track and intensity forecasts have also been developed to better communicate on forecast uncertainty. Operational practices of several TC forecast centers are described herein and some challenges regarding forecasts and warnings for TCs making landfall are identified. This review concludes with insights from both researchers and forecasters regarding future directions to improve predictions of TC track, intensity, and structure at landfall.
基金National Key Basic Research Program of China(2015CB452804)National Natural Science Foundation of China(41575063,41275066,41075037)Ningbo Science and Technology Project(2014C50024)
文摘Forecasting the rapid intensification of tropical cyclones over offshore areas remains difficult. In this article,the Weather Research and Forecast(WRF) model was used to study the rapid intensification of Typhoon Haikui(1211)off the shore of China. After successful simulation of the intensity change and track of the typhoon, the model output was further analyzed to determine the mechanism of the rapid change in intensity. The results indicated that a remarkable increase in low-level moisture transportation toward the inner core, favorable large-scale background field with low-level convergence, and high-level divergence played key roles in the rapid intensification of Typhoon Haikui in which high-level divergence could be used as an indicator for the rapid intensity change of Typhoon Haikui approximately 6 h in advance. An analysis of the typhoon structure revealed that Typhoon Haikui was structurally symmetric during the rapid intensification and the range of the eyewall was small in the low level but extended outward in the high level. In addition, the vertically ascending motion, the radial and tangential along wind speeds increased with increasing typhoon intensity, especially during the process of rapid intensification. Furthermore, the intensity of the warm core of the typhoon increased during the intensification process with the warm core extending outward and toward the lower layer. All of the above structural changes contributed to the maintenance and development of typhoon intensity.
基金supported by the National Natural Science Foundation of China(Grant Nos.41775063 and 41975071)。
文摘Two different initialization schemes for tropical cyclone(TC)prediction in numerical models are evaluated based on a case study of Typhoon Lekima(2019).The first is a dynamical initialization(DI)scheme where the axisymmetric TC vortex in the initial conditions is spun up through the 6-h cycle runs before the initial forecast time.The second scheme is a bogussing scheme where the analysis TC vortex is replaced by a synthetic Rankine vortex.Results show that although both initialization schemes can help improve the simulated rapid intensification(RI)of Lekima,the simulation employing the DI scheme(DIS)reproduces better the RI onset and intensification rate than that employing the bogussing scheme(BOG).Further analyses show the cycle runs of DI help establish a realistic TC structure with stronger secondary circulation than those in the control run and BOG,leading to fast vortex spinup and contraction of the radius of maximum wind(RMW).The resultant strong inner-core primary circulation favors precession of the midlevel vortex under the moderate vertical wind shear(VWS)and thus helps vortex alignment,contributing to an earlier RI onset.Afterwards,the decreased vertical shear and the stronger convection inside the RMW support the persistent RI of Lekima in DIS.In contrast,the reduced VWS is not well captured and the inner-core convection is weaker and resides farther away from the TC center in BOG,leading to slower intensification.The results imply that the DI effectively improves the prediction of the inner-core process,which is crucial to the RI forecast.