A tropical cyclone is a kind of violent weather system that takes place in warmer tropical oceans and spins rapidly around its center and at the same time moves along surrounding flows. It is generally recognized that...A tropical cyclone is a kind of violent weather system that takes place in warmer tropical oceans and spins rapidly around its center and at the same time moves along surrounding flows. It is generally recognized that the large-scale circulation plays a major role in determining the movement of tropical cyclones and the effects of steering flows are the highest priority in the forecasting of tropical cyclone motion and track. This article adopts a new method to derive the steering flow and select a typical swerving track case (typhoon Dan, coded 9914) to illustrate the validity of the method. The general approach is to modify the vorticity, geostropical vorticity and divergence, investigate the change in the non-divergent stream function, geoptential and velocity potential, respectively, and compute a modified velocity field to determine the steering flow. Unlike other methods in regular use such as weighted average of wind fields or geopoential height, this method has the least adverse effects on the environmental field and could derive a proper steering flow which fits well with storm motion. Combined with other internal and external forcings, this method could have wide application in the prediction of tropical cyclone track.展开更多
Based on best track data of tropical cyclones(TCs) from the Japan Meteorological Agency, the characteristics of suddenly reversed TCs(SRTCs), which have turning angles usually approaching 180°, are statistica...Based on best track data of tropical cyclones(TCs) from the Japan Meteorological Agency, the characteristics of suddenly reversed TCs(SRTCs), which have turning angles usually approaching 180°, are statistically analyzed from 1949 to 2011 over the western North Pacific Ocean. The typical large-scale circulation patterns of SRTCs are investigated using reanalysis data and dynamical composite analysis. Results show that turnings mainly occur in low latitudes between 10°N and 20°N,and mainly west of 135°E. The majority of SRTCs reach their peak intensity at, or slightly before, the turning time and subsequently decrease at some variable rate. Specifically, SRTCs are divided into four types, each containing two groups(i.e.eight groups in total) in terms of the moving-direction changes. The moving speed of all SRTC types except the south–north type decreases to its lowest during the 24 h, corresponding to a significant reduction in the primary steering components.According to the analysis of the 13 typical flow patterns found in this study, we suggest that sudden track changes are caused by the reversal steering flow. The original balance of the background flow patterns are broken up by new systems, e.g. binary TCs or dispersion-induced anticyclones. Additionally, sudden track changes are often due to double ridge variations of the subtropical high or weakened/strengthened high pressure in the east and west, respectively.展开更多
The tropical cyclone (TC) trajectory model has been widely used to investigate the mechanism of the climate change of TC tracks. In thisstudy, the Gaussian weight interpolation method is used to calculate the beta d...The tropical cyclone (TC) trajectory model has been widely used to investigate the mechanism of the climate change of TC tracks. In thisstudy, the Gaussian weight interpolation method is used to calculate the beta drift in the TC track or trajectory model. By simulating historicalTC tracks, the new calculation can better simulate the spatial distribution of the frequency of TC occurrence. The improved track model isfurther used to understand the TC track change during the period of 1979e2016. In 1979e2016, the TC activity has been suppressed in theSouth China Sea (SCS) while the TC influence along the southeast coastal regions of China has been increased. The sensitivity experimentsindicate that the change of the formation location plays a dominant role in decreasing TC influence in the SCS while the change of theenvironmental steering flows increases the TC influence in the eastern coastal region of China. This study suggests that the ongoing climatechange can affect the TC activity along the coast of China.展开更多
This study analyzes landfall locations of tropical cyclones(TCs)over the western North Pacific during 1979–2018.Results demonstrate that the landfall locations of TCs over this region have shifted northward during th...This study analyzes landfall locations of tropical cyclones(TCs)over the western North Pacific during 1979–2018.Results demonstrate that the landfall locations of TCs over this region have shifted northward during the last four decades,primarily due to the shift of landfalling TC tracks,with the decreasing/increasing proportion of westward/northward TC tracks.In particular,the northward shift of the landfalling TCs was not related to their formation locations,which have not markedly changed,whereas"no-landed"TCs have significantly shifted northward.TC movement was significantly and positively correlated to the zonal component of the steering flow,while the correlation between TC movement and the meridional component of the steering flow was relatively unobvious.The westward steering flow in the tropical central Pacific that occurred around the formation and early development of the westward TCs was significantly weakened,which was unfavorable for their westward movement,thereby,causing the higher proportions of northward moving tracks.This weakened westward flow was related to the northward shift of the subtropical high ridge,which was caused by significant weakening of the southern part of the subtropical high.The vertical wind shear,sea surface temperature,and convective available potential energy also showed that the northern region of the western North Pacific became more favorable for TC development,whereas the upper divergence,low-layer relative vorticity,and accumulated water vapor content were not obviously related to the northward shift of TCs.展开更多
Using the 1949-2007 western North Pacific tropical cyclones (TCs) best-track data archived at the Shanghai Typhoon Institute of China Meteorological Administration for the western North Pacific from 1949 to 2007,both ...Using the 1949-2007 western North Pacific tropical cyclones (TCs) best-track data archived at the Shanghai Typhoon Institute of China Meteorological Administration for the western North Pacific from 1949 to 2007,both the characteristics of binary and multiple TCs and samples of interactions among TCs and multi-TCs are identified and statistically analyzed.According to the various features of individual TC tracks and interacting tracks,seven distinct types are proposed to describe the binary system of TCs and their interaction samples.The mean trajectories of the west and east component of binary TCs in each type are obtained using a new cluster analysis technique.These types are then analyzed in terms of landfall process,occurrence seasonality,coexistent lifetime,especially the large-scale patterns of atmospheric circulation.Finally,typical steering flows and conceptual models of the binary TCs at different phases are established based on six-hourly flow maps of the binary system and the averages are determined of the mean steering flow of ten representative binary TCs.Then,typical steering flows and conceptual models at the beginning,middle and final phase in each type are established to describe the large-scale circulation patterns of the binary system interaction types.展开更多
The westward migration of tropical cyclone(TC)activity has been identified in the western North Pacific(WNP),but the related features and causes remain elusive.Here,based on the best track data from China,Japan,and th...The westward migration of tropical cyclone(TC)activity has been identified in the western North Pacific(WNP),but the related features and causes remain elusive.Here,based on the best track data from China,Japan,and the US,and the NCEP–NCAR reanalysis data in 1982–2020,we investigate characteristics of the westward migration of the WNP TC activity with various metrics,and reveal possible causes for the migration of TC tracks through analyzing its seasonality and dependence on environmental conditions.The results show that the WNP TCs show significant westward migrations in a number of metrics,including location of tracks,genesis,the first track point at which TC reaches its lifetime-maximum intensity,and the last track point in the TC lifetime.It is found that TC tracks exhibit more significant westward migrations in the easterly steering flow than in the westerly steering flow.Meanwhile,the TC longitude shift shows notable seasonal variations,for which the TCs in the easterlies move further west than those in the westerlies during July–September,vice versa during October–December.The dependence of the westward migration of TC tracks on background steering flow is associated with the different environmental conditions.The westward shift in the westerly steering is mainly due to the reduced vertical wind shear(VWS),while the weakened zonal easterly steering and reduced VWS are both closely related to the westward migration in the easterly steering.These results have important implications for understanding current and future variations in TC longitude shift.展开更多
基金project of the Ministry of Sciences and Technology of the People’s Republic of China (GYHY200706020)projects of National Natural Science Foundation of China ((40975034, 40505009)project of State Key Laboratory of Severe Weather (2008LASW-A01)
文摘A tropical cyclone is a kind of violent weather system that takes place in warmer tropical oceans and spins rapidly around its center and at the same time moves along surrounding flows. It is generally recognized that the large-scale circulation plays a major role in determining the movement of tropical cyclones and the effects of steering flows are the highest priority in the forecasting of tropical cyclone motion and track. This article adopts a new method to derive the steering flow and select a typical swerving track case (typhoon Dan, coded 9914) to illustrate the validity of the method. The general approach is to modify the vorticity, geostropical vorticity and divergence, investigate the change in the non-divergent stream function, geoptential and velocity potential, respectively, and compute a modified velocity field to determine the steering flow. Unlike other methods in regular use such as weighted average of wind fields or geopoential height, this method has the least adverse effects on the environmental field and could derive a proper steering flow which fits well with storm motion. Combined with other internal and external forcings, this method could have wide application in the prediction of tropical cyclone track.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41230421, 41005029 and 41105065)the National Public Benefit (Meteorology) Research Foundation of China (Grant No. GYHY201106004)
文摘Based on best track data of tropical cyclones(TCs) from the Japan Meteorological Agency, the characteristics of suddenly reversed TCs(SRTCs), which have turning angles usually approaching 180°, are statistically analyzed from 1949 to 2011 over the western North Pacific Ocean. The typical large-scale circulation patterns of SRTCs are investigated using reanalysis data and dynamical composite analysis. Results show that turnings mainly occur in low latitudes between 10°N and 20°N,and mainly west of 135°E. The majority of SRTCs reach their peak intensity at, or slightly before, the turning time and subsequently decrease at some variable rate. Specifically, SRTCs are divided into four types, each containing two groups(i.e.eight groups in total) in terms of the moving-direction changes. The moving speed of all SRTC types except the south–north type decreases to its lowest during the 24 h, corresponding to a significant reduction in the primary steering components.According to the analysis of the 13 typical flow patterns found in this study, we suggest that sudden track changes are caused by the reversal steering flow. The original balance of the background flow patterns are broken up by new systems, e.g. binary TCs or dispersion-induced anticyclones. Additionally, sudden track changes are often due to double ridge variations of the subtropical high or weakened/strengthened high pressure in the east and west, respectively.
文摘The tropical cyclone (TC) trajectory model has been widely used to investigate the mechanism of the climate change of TC tracks. In thisstudy, the Gaussian weight interpolation method is used to calculate the beta drift in the TC track or trajectory model. By simulating historicalTC tracks, the new calculation can better simulate the spatial distribution of the frequency of TC occurrence. The improved track model isfurther used to understand the TC track change during the period of 1979e2016. In 1979e2016, the TC activity has been suppressed in theSouth China Sea (SCS) while the TC influence along the southeast coastal regions of China has been increased. The sensitivity experimentsindicate that the change of the formation location plays a dominant role in decreasing TC influence in the SCS while the change of theenvironmental steering flows increases the TC influence in the eastern coastal region of China. This study suggests that the ongoing climatechange can affect the TC activity along the coast of China.
基金supported by the Fundamental Research Funds of the Special Program for Key Research and Development of Guangdong Province(Grant No.2019B111101002)Guangzhou Science and Technology Planning Project(Grant No.201903010036)+2 种基金China Postdoctoral Science Foundation(Grant No.2020M683021)National Natural Science Foundation of China(Grant Nos.42075004,41875021,and 41830533)Key Laboratory of Tropical Atmosphere-Ocean System(Sun Yat-sen University),Ministry of Education。
文摘This study analyzes landfall locations of tropical cyclones(TCs)over the western North Pacific during 1979–2018.Results demonstrate that the landfall locations of TCs over this region have shifted northward during the last four decades,primarily due to the shift of landfalling TC tracks,with the decreasing/increasing proportion of westward/northward TC tracks.In particular,the northward shift of the landfalling TCs was not related to their formation locations,which have not markedly changed,whereas"no-landed"TCs have significantly shifted northward.TC movement was significantly and positively correlated to the zonal component of the steering flow,while the correlation between TC movement and the meridional component of the steering flow was relatively unobvious.The westward steering flow in the tropical central Pacific that occurred around the formation and early development of the westward TCs was significantly weakened,which was unfavorable for their westward movement,thereby,causing the higher proportions of northward moving tracks.This weakened westward flow was related to the northward shift of the subtropical high ridge,which was caused by significant weakening of the southern part of the subtropical high.The vertical wind shear,sea surface temperature,and convective available potential energy also showed that the northern region of the western North Pacific became more favorable for TC development,whereas the upper divergence,low-layer relative vorticity,and accumulated water vapor content were not obviously related to the northward shift of TCs.
基金National Natural Science Foundation of China (4100502941105065)National Public Benefit (Meteorology) Research Foundaton of China (GYHY201106004)
文摘Using the 1949-2007 western North Pacific tropical cyclones (TCs) best-track data archived at the Shanghai Typhoon Institute of China Meteorological Administration for the western North Pacific from 1949 to 2007,both the characteristics of binary and multiple TCs and samples of interactions among TCs and multi-TCs are identified and statistically analyzed.According to the various features of individual TC tracks and interacting tracks,seven distinct types are proposed to describe the binary system of TCs and their interaction samples.The mean trajectories of the west and east component of binary TCs in each type are obtained using a new cluster analysis technique.These types are then analyzed in terms of landfall process,occurrence seasonality,coexistent lifetime,especially the large-scale patterns of atmospheric circulation.Finally,typical steering flows and conceptual models of the binary TCs at different phases are established based on six-hourly flow maps of the binary system and the averages are determined of the mean steering flow of ten representative binary TCs.Then,typical steering flows and conceptual models at the beginning,middle and final phase in each type are established to describe the large-scale circulation patterns of the binary system interaction types.
基金Supported by the National Natural Science Foundation of China(42075011 and 41605075)。
文摘The westward migration of tropical cyclone(TC)activity has been identified in the western North Pacific(WNP),but the related features and causes remain elusive.Here,based on the best track data from China,Japan,and the US,and the NCEP–NCAR reanalysis data in 1982–2020,we investigate characteristics of the westward migration of the WNP TC activity with various metrics,and reveal possible causes for the migration of TC tracks through analyzing its seasonality and dependence on environmental conditions.The results show that the WNP TCs show significant westward migrations in a number of metrics,including location of tracks,genesis,the first track point at which TC reaches its lifetime-maximum intensity,and the last track point in the TC lifetime.It is found that TC tracks exhibit more significant westward migrations in the easterly steering flow than in the westerly steering flow.Meanwhile,the TC longitude shift shows notable seasonal variations,for which the TCs in the easterlies move further west than those in the westerlies during July–September,vice versa during October–December.The dependence of the westward migration of TC tracks on background steering flow is associated with the different environmental conditions.The westward shift in the westerly steering is mainly due to the reduced vertical wind shear(VWS),while the weakened zonal easterly steering and reduced VWS are both closely related to the westward migration in the easterly steering.These results have important implications for understanding current and future variations in TC longitude shift.