期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
The Tropical Intraseasonal Oscillation in SAMIL Coupled and Uncoupled General Circulation Models 被引量:5
1
作者 杨静 包庆 +1 位作者 王晓聪 周天军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第3期529-543,共15页
Simulations of tropical intraseasonal oscillation (TISO) in SAMIL, the Spectral Atmospheric Model from the Institute of Atmospheric Physics (IAP) State Key Laboratory of Numerical Modeling for Atmospheric Sciences... Simulations of tropical intraseasonal oscillation (TISO) in SAMIL, the Spectral Atmospheric Model from the Institute of Atmospheric Physics (IAP) State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) coupled and uncoupled general circulation models were comprehensively evaluated in this study. Compared to the uncoupled model, the atmosphere-ocean coupled model improved the TISO simulation in the following aspects: (1) the spectral intensity for the 30-80-day peak eastward periods was more realistic; (2) the eastward propagation signals over western Pacific were stronger; and (3) the variance distribution and stronger signals of Kelvin waves and mixed Rossby gravity waves were more realistic. Better performance in the coupled run was assumed to be associated with a better mean state and a more realistic relationship between precipitation and SST. In both the coupled and uncoupled runs, the unrealistic simulation of the eastward propagation over the equatorial Indian Ocean might have been associated with the biases of the precipitation mean state over the Indian Ocean, and the unrealistic split of maximum TISO precipitation variance over the Pacific might have corresponded to the exaggeration of the double Intertropical Convergence Zone (ITCZ) structure in precipitation mean state. However, whether a better mean state leads to better TISO activity remains questionable. Notably, the northward propagation over the Indian Ocean during summer was not improved in the mean lead-lag correlation analysis, but case studies have shown some strong cases to yield remarkably realistic northward propagation in coupled runs. 展开更多
关键词 tropical intraseasonal oscillation atmosphere-ocean interaction mean state northward prop-agation simulation
下载PDF
Intensified Eastward and Northward Propagation of Tropical Intraseasonal Oscillation over the Equatorial Indian Ocean in a Global Warming Scenario 被引量:2
2
作者 杨静 包庆 王晓聪 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第1期167-174,共8页
Northward propagation in summer and eastward propagation in winter are two distinguished features of tropical intraseasonal oscillation (TISO) over the equatorial Indian Ocean. According to numerical modeling result... Northward propagation in summer and eastward propagation in winter are two distinguished features of tropical intraseasonal oscillation (TISO) over the equatorial Indian Ocean. According to numerical modeling results, under a global warming scenario, both propagations were intensified. The enhanced northward propagation in summer can be attributed to the enhanced atmosphere-ocean interaction and the strengthened mean southerly wind; and the intensified eastward propagation in winter is associated with the enhanced convection-wind coupling process and the strengthened equatorial Kevin wave. Future changes of TISO propagations need to be explored in more climate models. 展开更多
关键词 northward propagation eastward propagation tropical intraseasonal oscillation global warming
下载PDF
IMPACT OF TROPICAL INTRASEASONAL OSCILLATIONS ON THE PRECIPITATION OF GUANGDONG IN JUNES 被引量:2
3
作者 林爱兰 李春晖 +1 位作者 谷德军 郑彬 《Journal of Tropical Meteorology》 SCIE 2015年第4期326-336,共11页
The impact of tropical intraseasonal oscillations on the precipitation of Guangdong in Junes and its physical mechanism are analyzed using 30-yr(1979 to 2008), 86-station observational daily precipitation of Guangdong... The impact of tropical intraseasonal oscillations on the precipitation of Guangdong in Junes and its physical mechanism are analyzed using 30-yr(1979 to 2008), 86-station observational daily precipitation of Guangdong and daily atmospheric data from NCEP-DOE Reanalysis. It is found that during the annually first rainy season(April to June),the modulating effect of the activity of intraseasonal oscillations propagating eastward along the equator(MJO) on the June precipitation in Guangdong is different from that in other months. The most indicative effect of MJO on positive(negative) anomalous precipitation over the whole or most of the province is phase 3(phase 6) of strong MJO events in Junes. A Northwest Pacific subtropical high intensifies and extends westward during phase 3. Water vapor transporting along the edge of the subtropical high from Western Pacific enhances significantly the water vapor flux over Guangdong, resulting in the enhancement of the precipitation. The condition is reverse during phase 6. The mechanism for which the subtropical high intensifies and extends westward during phase 3 is related to the atmospheric response to the asymmetric heating over the eastern Indian Ocean. Analyses of two cases of sustained strong rainfall of Guangdong in June 2010 showed that both of them are closely linked with a MJO state which is both strong and in phase 3, besides the effect from a westerly trough. It is argued further that the MJO activity is indicative of strong rainfall of Guangdong in June. The results in the present work are helpful in developing strategies for forecasting severe rainfall in Guangdong and extending, combined with the outputs of dynamic forecast models, the period of forecasting validity. 展开更多
关键词 CLIMATOLOGY tropical intraseasonal oscillation eastward propagation mode GUANGDONG precipitation in June
下载PDF
SEASONAL VARIATIONS OF THE TROPICAL INTRASEASONAL OSCILLATION AND ITS REPRODUCTION IN SAMIL-R_(42)L_9 被引量:1
4
作者 贾小龙 李崇银 《Journal of Tropical Meteorology》 SCIE 2007年第2期173-176,共4页
Seasonal variations of the tropical intraseasonal oscillation (ISO) and relationship to seasonal variation of the climate background are studied by using NCEP/NCAR reanalysis data and output of SAMIL-R42L9. Analysis... Seasonal variations of the tropical intraseasonal oscillation (ISO) and relationship to seasonal variation of the climate background are studied by using NCEP/NCAR reanalysis data and output of SAMIL-R42L9. Analysis of NCEP data shows that spatial distribution of the tropical ISO has obvious seasonal variations, which are well consistent with the seasonal variation of climate background. The activity of the tropical ISO is, to a great extent, dependent on warm SST, strong convection, zonal western wind, strong precipitation and low-level moisture convergence. Main characteristics of the seasonal variations of the tropical ISO are captured by SAMIL-R42L9. Simulations of seasonal variation of climate background vary greatly with different variables. Results of SAMIL-R42L9 indicate that the seasonal variations of the tropical ISO in dynamical fields are more dependent on climate background than in heating fields and SAMIL-R42L9 canllot represent well the strong dependence of the ISO on the climate background present in NCEP/NCAR reanalysis data. It also suggests that seasonal variations of the ISO do not completely depend on that of climate background. 展开更多
关键词 tropical intraseasonal oscillation seasonal variation climate background GCM
下载PDF
NUMERICAL SIMULATION OF THE TROPICAL INTRASEASONAL OSCILLATION AND THE EFFECT OF WARM SST 被引量:16
5
作者 李崇银 Ian Smith 《Acta meteorologica Sinica》 SCIE 1995年第1期1-12,共12页
An atmospheric general circulation model is used in a series of three experiments to simulate the intraseasonal oscillation in the tropical atmosphere.Analyses of the model daily data show that various physical variab... An atmospheric general circulation model is used in a series of three experiments to simulate the intraseasonal oscillation in the tropical atmosphere.Analyses of the model daily data show that various physical variables,from sever- al different regions,exhibit fluctuations with a spectral peak between 30 and 60 days.This represents a 30—60 day oscillation in the tropical atmosphere and possesses several features which are consistent with observations.These in- clude a horizontal structure dominated by zonal wavenumber 1 and a vertical structure which is predominantly baroclinic. The effect of warm SST (sea surface temperature) anomalies on the 30—60 day oscillation in the tropical atmos- phere is also simulated by prescribing global SST as observed in 1983.This has the effect of weakening the oscillation while at the same time the vertical structure becomes less baroclinic. The importance of cumulus convection to the propagational characteristics of this oscillation is demonstrated by a comparison of results based on different parameterizations for convection.In one case,where the maximum convection over the Pacific is simulated to be too far east,the simulated 30—60 day oscillation shows evidence of westward propa- gation.In the second case,where the convection maximum is located near the observed position in the western Pacific, there is more clearly evidence of eastward propagation. Both results suggest that the location of maximum convection in the Pacific can have an important influence on the strength,structure and propagation of the 30—60 day oscillation. 展开更多
关键词 numerical experiment tropical intraseasonal oscillation cumulus convection sea surface temperature anomalies(SSTA)
原文传递
Simulations of the Tropical Intraseasonal Oscillation by the Atmospheric General Circulation Model of the Beijing Climate Center
6
作者 董敏 吴统文 +1 位作者 王在志 张芳 《Acta meteorologica Sinica》 SCIE 2010年第5期571-583,共13页
The performance of BCC (Beijing Climate Center) AGCM 2.0.1 (Atmospheric General Circulation Model version 2.0.1) in simulating the tropical intraseasonal oscillation (TIO) is examined in this paper.The simulatio... The performance of BCC (Beijing Climate Center) AGCM 2.0.1 (Atmospheric General Circulation Model version 2.0.1) in simulating the tropical intraseasonal oscillation (TIO) is examined in this paper.The simulations are validated against observation and compared with the NCAR CAM3 (Community Atmosphere Model version 3) results.The BCC AGCM2.0.1 is developed based on the original BCC AGCM (version 1) and NCAR CAM3.New reference atmosphere and reference pressure are introduced into the model.Therefore,the original prognostic variables of temperature and surface pressure become their departures from the reference atmosphere.A new Zhang-McFarlane convective parameterization scheme is incorporated into the model with a few modifications.Other modifications include those in the boundary layer process and snow cover calculation.All simulations are run for 52 yr from 1949 to 2001 under the lower boundary conditions of observed monthly SST.The TIOs from the model are analyzed.The comparison shows that the NCAR CAM3 has a poor ability in simulating the TIO.The simulated strength of the TIO is very weak.The energy of the eastward moving waves is similar to that of the westward moving waves in CAM3.While in observation the former is much larger than the latter.The seasonal variation and spatial distribution of the TIO produced by CAM3 are also much different from the observation.The ability of the BCC AGCM2.0.1 in simulating the TIO is significantly better.The simulated TIO is evident.The strength of the TIO produced by the BCC AGCM2.0.1 is close to the observation.The energy of eastward moving.waves is much stronger than that of the westward moving waves,which is consistent with the observation.There is no significant difference in the seasonal variation and spatial distribution of the TIO between the BCC model simulation and the observation.In general,the BCC model performs better than CAM3 in simulating the TIO. 展开更多
关键词 Beijing Climate Center (BCC) atmospheric general circulation model (AGCM) tropical intraseasonal oscillation (TIO) simulation study
原文传递
Sensitivity of the Simulated Tropical Intraseasonal Oscillation to Cumulus Parameterizations
7
作者 贾小龙 李崇银 《Acta meteorologica Sinica》 SCIE 2008年第3期257-276,共20页
The sensitivity of the simulated tropical intraseasonal oscillation or MJO (Madden and Julian oscillation) to different cumulus parameterizations is studied by using an atmospheric general circulation model (GCM)-... The sensitivity of the simulated tropical intraseasonal oscillation or MJO (Madden and Julian oscillation) to different cumulus parameterizations is studied by using an atmospheric general circulation model (GCM)--SAMIL (Spectral Atmospheric Model of IAP LASG). Results show that performance of the model in simulating the MJO alters widely when using two different cumulus parameterization schemes-the moist convective adjustment scheme (MCA) and the Zhang-McFarlane (ZM) scheme. MJO simulated by the MCA scheme was found to be more realistic than that simulated by the ZM scheme. MJO produced by the ZM scheme is too weak and shows little propagation characteristics. Weak moisture convergence at low levels simulated by the ZM scheme is not enough to maintain the structure and the eastward propagation of the oscillation. These two cumulus schemes produced different vertical structures of the heating profile. The heating profile produced by the ZM scheme is nearly uniform with height and the heating is too weak compared to that produced by the MCA, which maybe contributes greatly to the failure of simulating a reasonable MJO. Comparing the simulated MJO by these two schemes indicate that the MJO simulated by the GCM is highly sensitive to cumulus parameterizations implanted in. The diabatic heating profile plays an important role in the performance of the GCM. Three sensitivity experiments with different heating profiles are designed in which modified heating profiles peak respectively in the upper troposphere (UH), middle troposphere (MH), and lower troposphere (LH). Both the LH run and the MH run produce eastward propagating signals on the intraseasonal timescale, while it is interesting that the intraseasonal timescale signals produced by the UH run propagate westward. It indicates that a realistic intraseasonal oscillation is more prone to be excited when the maximum heating concentrates in the middle-low levels, especially in the middle levels, while westward propagating disturbances are more prone to be produced when the maximum heating appears very high. 展开更多
关键词 tropical intraseasonal oscillation cumulus parameterization diabatic heating profile
原文传递
Characteristics and Numerical Simulation of the Tropical Intraseasonal Oscillations under Global Warming
8
作者 刘芸芸 俞永强 +1 位作者 何金海 张振国 《Acta meteorologica Sinica》 SCIE 2007年第4期438-449,共12页
Using the ECMWF reanalysis daily 200-hPa wind data during the two 20-yr periods from 1958 to 1977 and from 1980 to 1999, the characteristics and changes of Intraseasonal Oscillations (ISO) in the two periods associa... Using the ECMWF reanalysis daily 200-hPa wind data during the two 20-yr periods from 1958 to 1977 and from 1980 to 1999, the characteristics and changes of Intraseasonal Oscillations (ISO) in the two periods associated with global warming are analyzed and compared in this study. It is found that during the last 20 years, the ISO has weakened in the central equatorial Pacific Ocean, but becomes more active in the central Indian Ocean and the Bay of Bengal; under the background of the global warming, increase in the amplitude of ISO intensity suggests that the ISO has become more active than before, with an obvious seasonal cycle, i.e., strong during winter and spring, but weak during summer and autumn; the energy of the upper tropospheric zonal winds has more concentrated in wave numbers 1-3, and the frequency of ISO tended to increase. Comparison between the results of control experiment and CO2 increase (1% per year) experiment of FGOALS-1.0g (developed at LASG) with the first and second 20-yr observations, is also performed, respectively. The comparative results show that the spatial structure of the ISO was well reproduced, but the strength of ISO was underestimated. On the basis of space-time spectral analysis, it is found that the simulated ISO contains too much high frequency waves, leading to the underestiniation of ISO intensity due to the dispersion of ISO energy. However, FGOALS-1.0g captured the salient features of ISO under the global warming background by two contrast experiments, such as the vitality and frequency-increasing of ISO in the central Indian Ocean and the Bay of Bengal. 展开更多
关键词 global warming tropical intraseasonal oscillation (ISO) coupled general circulation model(CGCM)
原文传递
MODULATION OF TC GENESIS OVER THE NORTHWESTERN PACIFIC BY ATMOSPHERIC INTRASEASONAL OSCILLATION
9
作者 田华 李崇银 杨晖 《Journal of Tropical Meteorology》 SCIE 2012年第1期11-20,共10页
The influence of intraseasonal oscillation (ISO) on TC genesis over the northwestern Pacific is studied through comparing analyses of the more and less TC years from 1979 to 2006. It is indicated that the ISO strongly... The influence of intraseasonal oscillation (ISO) on TC genesis over the northwestern Pacific is studied through comparing analyses of the more and less TC years from 1979 to 2006. It is indicated that the ISO strongly affects the TC genesis. In the years for more TC genesis, the ISO is weak and propagates insignificantly in the area to the west of the Philippines, but the ISO is strong in the area to the east of the Philippines and propagates significantly northwestward. In this situation, the Walker cell shifts gradually westward from the tropical western Pacific to the tropical eastern Indian Ocean. Convergent winds appear in the lower atmosphere while divergent winds in the upper atmosphere, suggesting the presence of enhanced ascending flow over the 140-160°E region and a favorable condition for TC genesis. Moreover, in the years for less TC genesis, the ISO gradually becomes stronger in the area to the west of the Philippines and significant eastward propagation prevails from the eastern Indian Ocean to the area around 120°E; the ISO is weak in the area to the east of the Philippines. During these years, the Walker circulation gradually moved eastward, with convergent winds in the upper troposphere and divergent winds in the lower troposphere. Sinking motion was significant, unfavorable for the TC genesis over the Northwestern Pacific. 展开更多
关键词 tropical intraseasonal oscillation (ISO) INFLUENCE TC genesis composite analysis
下载PDF
Research Progress in China on the Tropical Atmospheric Intraseasonal Oscillation
10
作者 李崇银 凌健 +3 位作者 宋洁 潘静 田华 陈雄 《Journal of Meteorological Research》 SCIE 2014年第5期671-692,共22页
Tropical intraseasonal oscillation (including the Madden-Julian oscillation) is an important element of the atmospheric circulation system. The activities and anomalies of tropical intraseasonal oscillations affect ... Tropical intraseasonal oscillation (including the Madden-Julian oscillation) is an important element of the atmospheric circulation system. The activities and anomalies of tropical intraseasonal oscillations affect weather and climate both inside and outside the tropical region. The study of these phenomena therefore represents one of the frontiers of atmospheric sciences. This review aims to synthesize and summarize studies of intraseasonal oscillation (ISO) by Chinese scientists within the last 5-10 years. We focus particularly on ISO's mechanisms, its numerical simulations (especially the impacts of diabatic heating profiles), relation- ships and interactions with ENSO (especially over the western Pacific), impacts on tropical cyclone genesis and tracks over the northwestern Pacific, and influences on the onset and activity of the South and East Asian monsoons (especially rainfall over China). Among these, focuses of ongoing research and unresolved issues related to ISO are also discussed. 展开更多
关键词 tropical intraseasonal oscillation Madden-Julian oscillation MECHANISM numerical simula-tion ENSO
原文传递
Further Study of Typhoon Tracks and the Low-Frequency (30-60 Days) Wind-Field Pattern at 850 hPa
11
作者 TIAN Hua LI Chong-Yin 《Atmospheric and Oceanic Science Letters》 2010年第6期319-324,共6页
The association of typhoon tracks over the western Pacific with the low-frequency wind-field pattern of atmospheric intraseasonal (30-60 days) oscillation at 850 hPa is further studied by using observational data anal... The association of typhoon tracks over the western Pacific with the low-frequency wind-field pattern of atmospheric intraseasonal (30-60 days) oscillation at 850 hPa is further studied by using observational data analyses. Comparative analyses of the composite wind fields at 850 hPa, contrasting the atmospheric intraseasonal oscillation (ISO) with the original circulation, show that the typhoon tracks are closely related to the wind pattern of the ISO but are not obviously related to the original wind fields. Case studies of two typhoons in 2006 also show that the low-frequency wind-field pattern, particularly the maximum-value line (belt) of low-frequency cyclonic vorticity at 850 hPa, is closely related to the typhoon track. Therefore, the lowfrequency circulation pattern and the maximum-value line (belt) of low- frequency cyclonic vorticity at 850hPa can be used to predict typhoon tracks over the northwestern Pacific. 展开更多
关键词 tropical intraseasonal oscillation Northwest Pacific. tvohoon track comoosite analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部