期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
The Tropical Intraseasonal Oscillation in SAMIL Coupled and Uncoupled General Circulation Models 被引量:5
1
作者 杨静 包庆 +1 位作者 王晓聪 周天军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第3期529-543,共15页
Simulations of tropical intraseasonal oscillation (TISO) in SAMIL, the Spectral Atmospheric Model from the Institute of Atmospheric Physics (IAP) State Key Laboratory of Numerical Modeling for Atmospheric Sciences... Simulations of tropical intraseasonal oscillation (TISO) in SAMIL, the Spectral Atmospheric Model from the Institute of Atmospheric Physics (IAP) State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) coupled and uncoupled general circulation models were comprehensively evaluated in this study. Compared to the uncoupled model, the atmosphere-ocean coupled model improved the TISO simulation in the following aspects: (1) the spectral intensity for the 30-80-day peak eastward periods was more realistic; (2) the eastward propagation signals over western Pacific were stronger; and (3) the variance distribution and stronger signals of Kelvin waves and mixed Rossby gravity waves were more realistic. Better performance in the coupled run was assumed to be associated with a better mean state and a more realistic relationship between precipitation and SST. In both the coupled and uncoupled runs, the unrealistic simulation of the eastward propagation over the equatorial Indian Ocean might have been associated with the biases of the precipitation mean state over the Indian Ocean, and the unrealistic split of maximum TISO precipitation variance over the Pacific might have corresponded to the exaggeration of the double Intertropical Convergence Zone (ITCZ) structure in precipitation mean state. However, whether a better mean state leads to better TISO activity remains questionable. Notably, the northward propagation over the Indian Ocean during summer was not improved in the mean lead-lag correlation analysis, but case studies have shown some strong cases to yield remarkably realistic northward propagation in coupled runs. 展开更多
关键词 tropical intraseasonal oscillation atmosphere-ocean interaction mean state northward prop-agation simulation
下载PDF
The 30–60-day Intraseasonal Oscillations over the Subtropical Western North Pacific during the Summer of 1998 被引量:9
2
作者 LU Riyu DONG Huilin +1 位作者 SU Qin Hui DING 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第1期1-7,共7页
The features of 30-60-day convection oscillations over the subtropical western North Pacific (WNP) were investigated, along with the degree of tropical-subtropical linkage between the oscillations over the WNP durin... The features of 30-60-day convection oscillations over the subtropical western North Pacific (WNP) were investigated, along with the degree of tropical-subtropical linkage between the oscillations over the WNP during summer 1998. It was found that 30-60-day oscillations were extremely strong in that summer over both the subtropical and tro]~ical WNP, providing a unique opportunity to study the behavior of subtropical oscillations and their relationship to tropical oscillations. Further analyses indicated that 30-60-day oscillations propagate westwards over the subtropical WNP and reach eastern China. In addition, 30-60-day oscillations in the subtropics are affected by those over the South China Sea (SCS) and tropical WNP through two mechanisms: (1) direct propagation from the tropics into the subtropics; and (2) a seesaw pattern between the tropics and subtropics, with the latter being predominant. 展开更多
关键词 intraseasonal oscillation CONVECTION western North Pacific tropical-extratropical interaction
下载PDF
Intensified Eastward and Northward Propagation of Tropical Intraseasonal Oscillation over the Equatorial Indian Ocean in a Global Warming Scenario 被引量:2
3
作者 杨静 包庆 王晓聪 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第1期167-174,共8页
Northward propagation in summer and eastward propagation in winter are two distinguished features of tropical intraseasonal oscillation (TISO) over the equatorial Indian Ocean. According to numerical modeling result... Northward propagation in summer and eastward propagation in winter are two distinguished features of tropical intraseasonal oscillation (TISO) over the equatorial Indian Ocean. According to numerical modeling results, under a global warming scenario, both propagations were intensified. The enhanced northward propagation in summer can be attributed to the enhanced atmosphere-ocean interaction and the strengthened mean southerly wind; and the intensified eastward propagation in winter is associated with the enhanced convection-wind coupling process and the strengthened equatorial Kevin wave. Future changes of TISO propagations need to be explored in more climate models. 展开更多
关键词 northward propagation eastward propagation tropical intraseasonal oscillation global warming
下载PDF
Modulation of Western North Pacific Tropical Cyclone Genesis by Intraseasonal Oscillation of the ITCZ:A Statistical Analysis 被引量:3
4
作者 曹西 黄平 +1 位作者 陈光华 陈文 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第4期744-754,共11页
The present study investigates modulation of western North Pacific (WNP) tropical cyclone (TC) genesis in relation to different phases of the intraseasonal oscillation (ISO) of ITCZ convection during May to Octo... The present study investigates modulation of western North Pacific (WNP) tropical cyclone (TC) genesis in relation to different phases of the intraseasonal oscillation (ISO) of ITCZ convection during May to October in the period 1979 2008. The phases of the ITCZ ISO were determined based on 30-80-day filtered OLR anomalies averaged over the region (5°20′N, 120°150′E). The number of TCs during the active phases was nearly three times more than during the inactive phases. The active (inactive) phases of ISO were characterized by low-level cyclonic (anticyclonic) circulation anomalies, higher (lower) midlevel relative humidity anomalies, and larger (smaller) vertical gradient anomalies of relative vorticity associated with enhanced (weakened) ITCZ convection anomalies. During the active phases, TCs tended to form in the center of the ITCZ region. Barotropic conversion from the low-level mean flow is suggested to be the major energy source for TC formation. The energy conversion mainly depended on the zonal and meridional gradients of the zonal flow during the active phases. However, barotropic conversion weakened greatly during the inactive phases. The relationship between the meridional gradient of absolute vorticity and low-level zonal flow indicates that the sign of the absolute vorticity gradient tends to be reversed during the two phases, whereas the same sign between zonal flow and the absolute vortieity gradient is more easily satisfied in the active phases. Thus, the barotropie instability of low-level zonal flow might be an important mechanism for TC formation over the WNP during the active phases of ISO. 展开更多
关键词 intertropical convergence zone (ITCZ) intraseasonal oscillation (ISO) tropical cyclone (TC) modulation
下载PDF
IMPACT OF TROPICAL INTRASEASONAL OSCILLATIONS ON THE PRECIPITATION OF GUANGDONG IN JUNES 被引量:2
5
作者 林爱兰 李春晖 +1 位作者 谷德军 郑彬 《Journal of Tropical Meteorology》 SCIE 2015年第4期326-336,共11页
The impact of tropical intraseasonal oscillations on the precipitation of Guangdong in Junes and its physical mechanism are analyzed using 30-yr(1979 to 2008), 86-station observational daily precipitation of Guangdong... The impact of tropical intraseasonal oscillations on the precipitation of Guangdong in Junes and its physical mechanism are analyzed using 30-yr(1979 to 2008), 86-station observational daily precipitation of Guangdong and daily atmospheric data from NCEP-DOE Reanalysis. It is found that during the annually first rainy season(April to June),the modulating effect of the activity of intraseasonal oscillations propagating eastward along the equator(MJO) on the June precipitation in Guangdong is different from that in other months. The most indicative effect of MJO on positive(negative) anomalous precipitation over the whole or most of the province is phase 3(phase 6) of strong MJO events in Junes. A Northwest Pacific subtropical high intensifies and extends westward during phase 3. Water vapor transporting along the edge of the subtropical high from Western Pacific enhances significantly the water vapor flux over Guangdong, resulting in the enhancement of the precipitation. The condition is reverse during phase 6. The mechanism for which the subtropical high intensifies and extends westward during phase 3 is related to the atmospheric response to the asymmetric heating over the eastern Indian Ocean. Analyses of two cases of sustained strong rainfall of Guangdong in June 2010 showed that both of them are closely linked with a MJO state which is both strong and in phase 3, besides the effect from a westerly trough. It is argued further that the MJO activity is indicative of strong rainfall of Guangdong in June. The results in the present work are helpful in developing strategies for forecasting severe rainfall in Guangdong and extending, combined with the outputs of dynamic forecast models, the period of forecasting validity. 展开更多
关键词 CLIMATOLOGY tropical intraseasonal oscillation eastward propagation mode GUANGDONG precipitation in June
下载PDF
SEASONAL VARIATIONS OF THE TROPICAL INTRASEASONAL OSCILLATION AND ITS REPRODUCTION IN SAMIL-R_(42)L_9 被引量:1
6
作者 贾小龙 李崇银 《Journal of Tropical Meteorology》 SCIE 2007年第2期173-176,共4页
Seasonal variations of the tropical intraseasonal oscillation (ISO) and relationship to seasonal variation of the climate background are studied by using NCEP/NCAR reanalysis data and output of SAMIL-R42L9. Analysis... Seasonal variations of the tropical intraseasonal oscillation (ISO) and relationship to seasonal variation of the climate background are studied by using NCEP/NCAR reanalysis data and output of SAMIL-R42L9. Analysis of NCEP data shows that spatial distribution of the tropical ISO has obvious seasonal variations, which are well consistent with the seasonal variation of climate background. The activity of the tropical ISO is, to a great extent, dependent on warm SST, strong convection, zonal western wind, strong precipitation and low-level moisture convergence. Main characteristics of the seasonal variations of the tropical ISO are captured by SAMIL-R42L9. Simulations of seasonal variation of climate background vary greatly with different variables. Results of SAMIL-R42L9 indicate that the seasonal variations of the tropical ISO in dynamical fields are more dependent on climate background than in heating fields and SAMIL-R42L9 canllot represent well the strong dependence of the ISO on the climate background present in NCEP/NCAR reanalysis data. It also suggests that seasonal variations of the ISO do not completely depend on that of climate background. 展开更多
关键词 tropical intraseasonal oscillation seasonal variation climate background GCM
下载PDF
Effects of air-sea coupling on the eastward propagating boreal winter intraseasonal oscillation over the tropical Indian Ocean 被引量:1
7
作者 LI Chun-Hui LIN Ai-Lan Tim Ll 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第1期51-57,共7页
The effects of air-sea coupling over the tropical Indian Ocean(TIO) on the eastward propagating boreal winter intraseasonal oscillation(MJO) are investigated by comparing a fully coupled and a partially decoupled ... The effects of air-sea coupling over the tropical Indian Ocean(TIO) on the eastward propagating boreal winter intraseasonal oscillation(MJO) are investigated by comparing a fully coupled and a partially decoupled Indian Ocean experiment using the SINTEX-F coupled model.Air-sea coupling over the TIO significantly enhances the intensity of the eastward propagations of the MJO along the5°-10°S zonal areas.The zonal asymmetry of the SST anomaly(SSTA) is responsible for the enhanced eastward propagation.A positive SSTA appears to the east of the MJO convection,which results in the boundary layer moisture convergence and positively feeds back to the MJO convection.In addition,the air-sea interaction effect on the eastward propagation of the MJO is related to the interannual variations of the TIO.Air-sea coupling enhances(reduces) the eastward-propagating spectrum during the negative Indian Ocean dipole mode and positive Indian Ocean basin mode.Such phase dependence is attributed to the role of the background mean westerly in affecting the wind-evaporation-SST feedback.Air-sea coupling(decoupling) enhances(reduces) the zonal asymmetry of the low-level specific humidity,and thus the eastward propagation spectrum of the MJO. 展开更多
关键词 Air-sea coupling boreal winter intraseasonal oscillations tropical Indian Ocean interannual variation
下载PDF
ON THE CHARACTERISTICS OF PROPAGATION OF INTRASEASONAL OSCILLATIONS AND THEIR OBSERVED ASSOCIATION WITH TROPICAL SYNOPTIC WAVES IN THE ASIAN-WESTERN PACIFIC REGION IN BOREAL SUMMER 被引量:1
8
作者 何洁琳 万齐林 +2 位作者 管兆勇 林爱兰 王黎娟 《Journal of Tropical Meteorology》 SCIE 2011年第3期248-256,共9页
Using the daily average outgoing longwave radiation and NCEP/NCAR reanalysis data in boreal summer(Mays to Octobers)from 1979 to 2007,the propagating characteristics of convection intraseasonal oscillations(ISOs)in th... Using the daily average outgoing longwave radiation and NCEP/NCAR reanalysis data in boreal summer(Mays to Octobers)from 1979 to 2007,the propagating characteristics of convection intraseasonal oscillations(ISOs)in the Asian-western Pacific(AWP)region and the relationship between tropical synoptic waves and ISOs are examined by means of finite-domain wavenumber-frequency energy spectrum analysis and lagged linear regression technique.The results are shown as follows.(1)The AWP ISOs propagate both eastward and westward,showing seasonality and regionality.The ISOs propagate eastward with a period of 30 to 60 days over equatorial regions in the whole AWP region,while the westward propagation occurs over 10 to 20°N western Pacific or in the late summers(August,September and October) with periods of 20 to 40 days.The ISOs eastward propagation mainly occurs in primary summers while the westward propagation enhances in late summers.(2)Deep ISO convections associate with westerly and cyclonic circulation anomalies that first form in the Indian Ocean,propagate eastward to the dateline in the Pacific and then turn northwestward.The ISOs convections show northwestward propagating characteristics in the western North Pacific.(3)The ISOs link with the tropical synoptic waves closely.Both convection signals,though with different spatio-temporal scale,enhance simutaneously in the northwestern Pacific,and the ISOs facilitate the forming of a cluster of tropical cyclones(TCs),while a cluster of TCs convection becomes one portion of the northwestward ISOs. 展开更多
关键词 intraseasonal oscillation finite-domain wavenumber-frequency energy spectral analysis lagged linear regression technique tropical synoptic wave
下载PDF
THE EXCITING MECHANISM OF TROPICAL INTRASEASONAL OSCILLATION TO EL NINO EVENT
9
作者 李崇银 廖清海 《Journal of Tropical Meteorology》 SCIE 1998年第2期113-121,共9页
The data analyses indicated that the occurrence of D Nino event is closely related to intraseasonal oscillation (ISO) in the tropical atmosphere : The intraseasonal oscillation is very strong in tile tropics (particul... The data analyses indicated that the occurrence of D Nino event is closely related to intraseasonal oscillation (ISO) in the tropical atmosphere : The intraseasonal oscillation is very strong in tile tropics (particularly over the equatorial western Pacific) prior to the occurrence of El Nino; But the ISO is evidently reduced and the quasistationary system is enhanced after the outbreak of El Nino. A simple air-sea coupled model study shows that the periodical self-excited oscillation can be produced in the air-sea-coupled system, but the pattern is different from the observed ENSO mode. When there is external (atmospheric) forcing with interannual time scale, a coupled mode, which looks like the ENSO mode, will be excited in the air-sea system. Synthesizing the results in data analyses and the theoretical investigation. the mechanism of ISO in the tropical atmosphere exciting the EI Nino event can be suggested : The interannual anomalies (variations) of the tropical ISO play an important role in the exciting EI Nino event through the air-sea interaction. 展开更多
关键词 intraseasonal oscillation (ISO) in the tropical atmosphere INTERANNUAL ANOMALIES El Nino (ENSO)
下载PDF
INTRASEASONAL OSCILLATIONS IN ASIA TO WESTERN PACIFIC REGION IN BOREAL SUMMER:CONTRASTIVE ANALYSIS FOR ACTIVE AND INACTIVE YEARS OF TROPICAL CYCLONES
10
作者 何洁琳 万齐林 +2 位作者 管兆勇 林爱兰 王黎娟 《Journal of Tropical Meteorology》 SCIE 2011年第4期326-334,共9页
Comparative analysis is carried out by using finite-domain power spectrum and lagged regression methods for the propagating characteristics and air-sea interaction processes of intraseasonal oscillations (ISOs) in the... Comparative analysis is carried out by using finite-domain power spectrum and lagged regression methods for the propagating characteristics and air-sea interaction processes of intraseasonal oscillations (ISOs) in the Asia to western Pacific (AWP) region during the boreal summer between the active and inactive tropical cyclone (TC) years from 1979 to 2004.The results show as follows.(1) There exist more significant eastward propagating characteristics of the ISO in the active TC years over the whole AWP region.The ISOs of convection propagate zonally with more eastward extension in the years with active tropical cyclone activities,during which the 20-60-day period is strengthened,western Pacific becomes an area with evident characteristics of the propagation that is closely related to TC activities.(2) The air-sea interaction processes are the same in both active and inactive TC years,and the energy exchanges between the air and the sea play a role in maintaining the northwestward propagation of ISOs.(3) The air-sea interaction is more intensive in the active TC years than in the inactive ones.It is particularly true for the latent heat release by condensation as the result of convection,which may be one of the reasons resulting in significant differences in characteristics of ISOs between the active and inactive TC years. 展开更多
关键词 intraseasonal oscillation finite-domain wavenumber-frequency energy spectrum lagged linear regression tropical cyclones
下载PDF
Revisiting the intraseasonal,interannual and interdecadal variability of tropical cyclones in the western North Pacific 被引量:2
11
作者 LI Richard C.Y. ZHOU Wen 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第2期198-208,共11页
This paper reviews the recent progress and research on the variability of tropical cyclones(TCs) at different time scales. Specific focus is placed on how different types of external forcings or climatic oscillations ... This paper reviews the recent progress and research on the variability of tropical cyclones(TCs) at different time scales. Specific focus is placed on how different types of external forcings or climatic oscillations contribute to TC variability in the western North Pacific(WNP). At the intraseasonal scale, recent advances on the distinctive impacts of the Madden–Julian Oscillation(MJO), the Quasi-biweekly Oscillation, and the asymmetric MJO modulation under different El Ni?o–Southern Oscillation(ENSO) states, as well as the influences of the Pacific–Japan teleconnection, are highlighted. Interannually, recent progress on the influences of the ENSO cycle, different flavors of ENSO, and impacts of Indian Ocean warming is presented. In addition, the uncertainty concerning interdecadal TC variations is discussed, along with the recently proposed modulation mechanisms related to the zonal sea surface temperature gradient, the North Pacific Gyre Oscillation, and the Pacific Decadal Oscillation(PDO). It is hoped that this study can deepen our understanding and provide information that the scientific community can use to improve the seasonal forecasting of TCs in the WNP. 展开更多
关键词 tropical cylones intraseasonal oscillation ENSO Pacific-Japan TELECONNECTION
下载PDF
MODULATION OF TC GENESIS OVER THE NORTHWESTERN PACIFIC BY ATMOSPHERIC INTRASEASONAL OSCILLATION
12
作者 田华 李崇银 杨晖 《Journal of Tropical Meteorology》 SCIE 2012年第1期11-20,共10页
The influence of intraseasonal oscillation (ISO) on TC genesis over the northwestern Pacific is studied through comparing analyses of the more and less TC years from 1979 to 2006. It is indicated that the ISO strongly... The influence of intraseasonal oscillation (ISO) on TC genesis over the northwestern Pacific is studied through comparing analyses of the more and less TC years from 1979 to 2006. It is indicated that the ISO strongly affects the TC genesis. In the years for more TC genesis, the ISO is weak and propagates insignificantly in the area to the west of the Philippines, but the ISO is strong in the area to the east of the Philippines and propagates significantly northwestward. In this situation, the Walker cell shifts gradually westward from the tropical western Pacific to the tropical eastern Indian Ocean. Convergent winds appear in the lower atmosphere while divergent winds in the upper atmosphere, suggesting the presence of enhanced ascending flow over the 140-160°E region and a favorable condition for TC genesis. Moreover, in the years for less TC genesis, the ISO gradually becomes stronger in the area to the west of the Philippines and significant eastward propagation prevails from the eastern Indian Ocean to the area around 120°E; the ISO is weak in the area to the east of the Philippines. During these years, the Walker circulation gradually moved eastward, with convergent winds in the upper troposphere and divergent winds in the lower troposphere. Sinking motion was significant, unfavorable for the TC genesis over the Northwestern Pacific. 展开更多
关键词 tropical intraseasonal oscillation (ISO) INFLUENCE TC genesis composite analysis
下载PDF
IMPACT OF CONVECTION OVER THE SOUTH CHINA SEA ON TROPICAL CYCLONE MOTION OVER THE WESTERN NORTH PACIFIC DURING SUMMER MONSOON 被引量:2
13
作者 霍利微 郭品文 《Journal of Tropical Meteorology》 SCIE 2017年第1期58-67,共10页
The intraseasonal oscillation(ISO) of the South China Sea(SCS, 105-120°E, 5-20°N) convection and its influences on the genesis and track of the western North Pacific(WNP) tropical cyclones(TCs) were explored... The intraseasonal oscillation(ISO) of the South China Sea(SCS, 105-120°E, 5-20°N) convection and its influences on the genesis and track of the western North Pacific(WNP) tropical cyclones(TCs) were explored, based on the daily average of NCEP/NCAR reanalysis data, the OLR data and the western North Pacific tropical cyclone best-track data from 1979 to 2008. The mechanism of the influences of ISO on TC movement and the corresponding large-scale circulation were discussed by a trajectory model. It was found as follows.(1) During the SCS summer monsoon, the SCS convection exhibits the ISO features with active phases alternating with inactive phases. The monsoon circulation patterns are significantly different during these two phases. When the SCS convection is active(inactive), the SCS-WNP monsoon trough stretches eastward(retreats westward) due to the activity(inactivity) of SCS monsoon, and the WNP subtropical high retreats eastward(stretches westward), which enhances(suppresses) the monsoon circulation.(2) The amount of TC genesis in the active phase is much more than that in the inactive phase. A majority of TCs form west of 135 °E during the active phases but east of 135 °E in the inactive phases.(3) The TCs entering the area west of 135 °E and south of 25 °N would move straight into the SCS in the active phase, or recurve northward in the inactive phase.(4) Simulation results show that the steering flow associated with the active(inactive)phases is in favor of straight-moving(recurving) TCs. Meanwhile, the impacts of the locations of TC genesis on the characteristics of TC track cannot be ignored. TCs that occurred father westward are more likely to move straight into the SCS region. 展开更多
关键词 tropical cyclone genesis and track climatological statistics South China Sea convection intraseasonal oscillation monsoon trough trajectory model
下载PDF
季节内印度洋-西太平洋对流涛动对次季节-季节尺度大气可预报性的影响
14
作者 胡榕 李建平 侯兆禄 《热带气象学报》 CSCD 北大核心 2024年第1期85-100,共16页
利用非线性局部Lyapunov指数和条件非线性局部Lyapunov指数定量估计了季节内印度洋-西太平洋对流涛动(IPCO)和实时多变量Madden-Julian指数(RMM指数)可预报期限,量化了季节内IPCO对S2S尺度大气可预报性的贡献,深入研究了季节内IPCO演变... 利用非线性局部Lyapunov指数和条件非线性局部Lyapunov指数定量估计了季节内印度洋-西太平洋对流涛动(IPCO)和实时多变量Madden-Julian指数(RMM指数)可预报期限,量化了季节内IPCO对S2S尺度大气可预报性的贡献,深入研究了季节内IPCO演变下S2S尺度可预报期限空间分布的变化规律。结果表明:(1)与RMM指数相比,季节内IPCO指数可预报性更强,可预报期限达到31天左右,比RMM指数高出2周以上;(2)印度洋-西太平洋区域S2S尺度大气可预报性最强,可预报期限达到30天以上,其中季节内IPCO是该地区的主要可预报性来源之一,其贡献达到6天,占总可预报期限的25%以上;(3)随着季节内IPCO的演变,印度洋-西太平洋地区S2S尺度大气可预报性有空间结构变化,表现为可预报期限异常的传播和振荡。S2S尺度大气可预报期限正负异常沿季节内IPCO传播路径,一支以赤道中西印度洋为起点北传至印度半岛,一支向东传播,经过海洋性大陆到赤道西太平洋后向北传播,到达日本南部。同时,可预报性异常的传播在在东印度洋和西太平洋表现出反向变化的特征,形成东西两极振荡,当季节内IPCO向正位相发展时,东印度洋具有更强的可预报性,西太平洋具有更弱的可预报性,反之亦然。季节内IPCO的发展(衰退)可使东印度洋(西太平洋)S2S尺度大气可预报性更强,表明模式预报技巧对此具有更大的提升空间。 展开更多
关键词 季节内印度洋-西太平洋对流涛动(IPCO) S2S尺度可预报性 热带季节内振荡 非线性局部Lyapunov指数
下载PDF
NUMERICAL SIMULATION OF THE TROPICAL INTRASEASONAL OSCILLATION AND THE EFFECT OF WARM SST 被引量:16
15
作者 李崇银 Ian Smith 《Acta meteorologica Sinica》 SCIE 1995年第1期1-12,共12页
An atmospheric general circulation model is used in a series of three experiments to simulate the intraseasonal oscillation in the tropical atmosphere.Analyses of the model daily data show that various physical variab... An atmospheric general circulation model is used in a series of three experiments to simulate the intraseasonal oscillation in the tropical atmosphere.Analyses of the model daily data show that various physical variables,from sever- al different regions,exhibit fluctuations with a spectral peak between 30 and 60 days.This represents a 30—60 day oscillation in the tropical atmosphere and possesses several features which are consistent with observations.These in- clude a horizontal structure dominated by zonal wavenumber 1 and a vertical structure which is predominantly baroclinic. The effect of warm SST (sea surface temperature) anomalies on the 30—60 day oscillation in the tropical atmos- phere is also simulated by prescribing global SST as observed in 1983.This has the effect of weakening the oscillation while at the same time the vertical structure becomes less baroclinic. The importance of cumulus convection to the propagational characteristics of this oscillation is demonstrated by a comparison of results based on different parameterizations for convection.In one case,where the maximum convection over the Pacific is simulated to be too far east,the simulated 30—60 day oscillation shows evidence of westward propa- gation.In the second case,where the convection maximum is located near the observed position in the western Pacific, there is more clearly evidence of eastward propagation. Both results suggest that the location of maximum convection in the Pacific can have an important influence on the strength,structure and propagation of the 30—60 day oscillation. 展开更多
关键词 numerical experiment tropical intraseasonal oscillation cumulus convection sea surface temperature anomalies(SSTA)
原文传递
Extremely Active Tropical Cyclone Activities over the Western North Pacific and South China Sea in Summer 2018: Joint Effects of Decaying La Nina and Intraseasonal Oscillation 被引量:6
16
作者 Lijuan CHEN Zhensong GONG +1 位作者 Jie WU Weijing LI 《Journal of Meteorological Research》 SCIE CSCD 2019年第4期609-626,共18页
In summer 2018,a total of 18 tropical cyclones(TCs)formed in the western North Pacific(WNP)and South China Sea(SCS),among which 8 TCs landed in China,ranking respectively the second and the first highest since 1951.Mo... In summer 2018,a total of 18 tropical cyclones(TCs)formed in the western North Pacific(WNP)and South China Sea(SCS),among which 8 TCs landed in China,ranking respectively the second and the first highest since 1951.Most of these TCs travelled northwest to northward,bringing in heavy rainfall and strong winds in eastern China and Japan.The present study investigates the impacts of decaying La Nina and intraseasonal oscillation(ISO)on the extremely active TCs over the WNP and SCS in summer 2018 by use of correlation and composite analyses.It is found that the La Nina episode from October 2017 to March 2018 led to above-normal sea surface temperature(SST)over central–western Pacific,lower sea level pressure and 500-hPa geopotential height over WNP,and abnormally strong convective activities over the western Pacific in summer 2018.These preceding oceanic thermal conditions and their effects on circulation anomalies are favorable to TC genesis in summer.Detailed examination reveals that the monsoon trough was located further north and east,inducing more TCs in northern and eastern WNP;and the more eastward WNP subtropical high as well as the significant wave train with a"-+-+"height anomaly pattern over the midlatitude Eurasia–North Pacific region facilitated the northwest to northward TC tracks.Further analyses reveal that two successively active periods of Madden–Julian Oscillation(MJO)occurred in summer 2018 and the boreal summer intraseasonal oscillation(BSISO)was also active over WNP,propagating northward significantly,corresponding to the more northward TC tracks.The MJO was stagnant over the Maritime Continent to western Pacific,leading to notably enhanced convection in the lower troposphere and divergence in the upper troposphere,conducive to TC occurrences.In a word,the extremely active TC activities over the WNP and SCS in summer 2018 are closely linked with the decaying La Nina,and the MJO and BSISO;their joint effects result in increased TC occurrences and the TC tracks being shifted more northwest to northward than normal. 展开更多
关键词 western North Pacific(WNP) tropical cyclone(TC) La Nina event Madden-Julian oscillation(MJO) boreal summer intraseasonal oscillation(BSISO)
原文传递
西北太平洋热带气旋频次的延伸期动力-统计预报方法和评估
17
作者 徐邦琪 魏澎 +1 位作者 钱伊恬 游立军 《大气科学学报》 CSCD 北大核心 2024年第1期65-79,共15页
介绍了西北太平洋热带气旋(TC)频次的延伸期预报方法,比较了新构建的动力-统计和统计预报模型的预测技巧,并探讨了预报误差来源及改进方向。动力-统计预报模型是基于动力模式预测的热带季节内振荡(ISO)信号及ISO-TC生成的同期统计关系... 介绍了西北太平洋热带气旋(TC)频次的延伸期预报方法,比较了新构建的动力-统计和统计预报模型的预测技巧,并探讨了预报误差来源及改进方向。动力-统计预报模型是基于动力模式预测的热带季节内振荡(ISO)信号及ISO-TC生成的同期统计关系来进行预报;统计预报模型则是基于TC生成的前兆ISO信号建模预报。预报评估结果显示,动力-统计混合预报模型的预报技巧高于统计预报模型,原因在于影响TC次季节变化的前兆信号并不稳定,且随着预报超前时间迅速消散,无法提供有效且稳定的可预报源;相反地,TC生成与同期的ISO背景场显著相关,动力模式对ISO(预报因子)有较好的预报能力,因此动力-统计相结合的预报方法为TC延伸期预报提供了有效途径。虽然目前动力-统计预报模型的预报技巧可达5~6周,但仍有进一步改进和提高的空间。通过对不同类型TC预报技巧检验和误差分析,研究认为年际和年代际背景场对ISO调控TC活动的影响不可忽略,且热带外ISO信号(如罗斯贝波破碎和西风急流强度等)对TC频次和轨迹也有显著影响,这些因子为TC延伸期预报提供了潜在可预报源。 展开更多
关键词 热带气旋 季节内振荡 延伸期预报 可预报性来源 热带外信号
下载PDF
基于改进版NUIST CFS1.1的热带大气季节内信号及其对中国气温降水影响的预测评估
18
作者 伍继业 谢欣芮 罗京佳 《大气科学学报》 CSCD 北大核心 2024年第2期284-299,共16页
基于南京信息工程大学次季节气候预测系统(NUIST CFS1.1),通过调整成员的大气初始化方案并优化了集合预测方案,构建了性能更优、计算成本更低的9成员NUIST CFS1.1 Pro系统。进一步基于实时多变量Madden-Julian Oscillation(MJO)指数和... 基于南京信息工程大学次季节气候预测系统(NUIST CFS1.1),通过调整成员的大气初始化方案并优化了集合预测方案,构建了性能更优、计算成本更低的9成员NUIST CFS1.1 Pro系统。进一步基于实时多变量Madden-Julian Oscillation(MJO)指数和两类北半球夏季季节内振荡(Boreal Summer Intraseasonal Oscillation,BSISO)指数BSISO1和BSISO2,评估了该预测系统对热带不同季节的大气季节内振荡(ISO)的预测技巧。结果表明,NUIST CFS1.1 Pro能分别提前26、17、12 d有效预测(距平相关高于0.5)MJO、BSISO1、BSISO2,对强事件(振幅>1)的有效预测时长能分别延长到30、21、13 d。此预测性能对比国内其他最新次季节动力模式如BCC_CSM2和FGOALS-f2有一定优势,同时在与国际S2S计划的8个主要业务预测系统的技巧对比中,NUIST CFS1.1 Pro在冬季MJO和夏季BSISO1预测上处于较为领先的水平,BSISO2的预测则处于中等水平;对不同位相的计算技巧显示,冬季MJO和夏季BSISO1的2、3、6、7位相较其他位相技巧更高。进一步的分析表明,NUIST CFS1.1 Pro能提前5候准确把握冬季MJO的东传特征,并能在一定程度上预测出其对我国气温异常的影响,尤其是对位相2、3时候的冷异常预测;而在夏季,则能提前4候正确预测BSISO1的北传、西北传特征,尤其能较好地预测西北太平洋上的对流和低层环流异常,从而成功预测出BSISO1造成的我国东部地区降水异常的空间形态。然而预测的强度较观测偏弱,这需要进一步的工作来改进。 展开更多
关键词 热带大气季节内振荡 次季节预测 中国气温降水
下载PDF
春夏季热带东印度洋海温的季节内振荡及大气响应
19
作者 张镁熠 李秀珍 《热带气象学报》 CSCD 北大核心 2024年第3期491-503,共13页
基于1982—2020年OISSTv2.1数据集、NOAA Interpolated OLR数据集和NCEP/DOE II再分析数据资料,通过功率谱分析、位相合成法等方法研究了春夏季(3—8月)热带东印度洋海温季节内振荡的特征及大气的响应。结果发现春夏季热带东印度洋海温... 基于1982—2020年OISSTv2.1数据集、NOAA Interpolated OLR数据集和NCEP/DOE II再分析数据资料,通过功率谱分析、位相合成法等方法研究了春夏季(3—8月)热带东印度洋海温季节内振荡的特征及大气的响应。结果发现春夏季热带东印度洋海温季节内振荡的显著周期主要集中在20~50天,强海温振荡事件主要分布在4—7月,关键区内对流抑制超前暖海温异常1/8周期,滞后冷海温异常3/8周期,反之亦然。春夏季海温异常激发的对流异常呈经向偶极子分布,且有明显的北移演变特征,但北侧的对流中心较南侧弱,即对流在北移过程中迅速衰减。使用K-means聚类法提取了两种具有显著差异的环流响应类型:北移型和局地型。北移型主要分布在夏季,表现为更有组织性的对流偶极子对,南北中心的强度和影响范围相当且北移特征更为清晰。在对流偶极子北移的过程中显著影响阿拉伯海上西南季风的强弱,对印度半岛夏季风季节内变化的影响较大。局地型主要分布在春夏转换季节,对流异常呈单一中心结构,移动性较弱,主要在热带东印度洋上空发展和消亡。热带东印度洋海温季节内振荡耦合的大气环流异常主要影响赤道印度洋地区,对热带外的影响较弱。进一步探究发现,背景东风切变的差异是导致两种对流响应差异的原因。夏季,北印度洋东风切变强,垂直风切变机制导致对流明显北移,春夏转换季节,东风切变弱,垂直风切变机制不成立,较弱的正压涡度平流机制引起对流微弱的北移,但主要在局地生消。 展开更多
关键词 热带东印度洋 海表温度 季节内振荡 大气响应 K-means聚类法
下载PDF
Research Progress in China on the Tropical Atmospheric Intraseasonal Oscillation
20
作者 李崇银 凌健 +3 位作者 宋洁 潘静 田华 陈雄 《Journal of Meteorological Research》 SCIE 2014年第5期671-692,共22页
Tropical intraseasonal oscillation (including the Madden-Julian oscillation) is an important element of the atmospheric circulation system. The activities and anomalies of tropical intraseasonal oscillations affect ... Tropical intraseasonal oscillation (including the Madden-Julian oscillation) is an important element of the atmospheric circulation system. The activities and anomalies of tropical intraseasonal oscillations affect weather and climate both inside and outside the tropical region. The study of these phenomena therefore represents one of the frontiers of atmospheric sciences. This review aims to synthesize and summarize studies of intraseasonal oscillation (ISO) by Chinese scientists within the last 5-10 years. We focus particularly on ISO's mechanisms, its numerical simulations (especially the impacts of diabatic heating profiles), relation- ships and interactions with ENSO (especially over the western Pacific), impacts on tropical cyclone genesis and tracks over the northwestern Pacific, and influences on the onset and activity of the South and East Asian monsoons (especially rainfall over China). Among these, focuses of ongoing research and unresolved issues related to ISO are also discussed. 展开更多
关键词 tropical intraseasonal oscillation Madden-Julian oscillation MECHANISM numerical simula-tion ENSO
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部