A heavy rainfall process in Guangdong Province on 17-18 in June of 2009 was simulated by the mesoscale numerical model MM5 and was analyzed with the synoptic charts and satellite imagine.The results indicated that 500...A heavy rainfall process in Guangdong Province on 17-18 in June of 2009 was simulated by the mesoscale numerical model MM5 and was analyzed with the synoptic charts and satellite imagine.The results indicated that 500 hPa southern trough and 850 hPa shear line constituted the two systems of causing the weather process of heavy precipitation,whose favorable configuration was the focus of the heavy rain forecast.High-level westerly jet stream played an important role in this heavy rainfall process.With the 'suction effect' of strong upper-level jet divergence at 200 hPa level,the low-level shear line pressed southward,which made low-level warm damp air move upwards along the shear line so as to generate a strong upward motion,providing favorable background conditions for the occurrence and development of heavy precipitation.There was fairly good correspondence between 850 hPa horizontal helicity center and the influence system's development and movement.The distribution of horizontal helicity had a certain relationship with the falling areas of heavy precipitation.展开更多
We analyzed cloud microphysical processes' latent heat characteristics and their influence on an autumn heavy rain event over Hainan Island,China,using the mesoscale numerical model WRF and WRF-3DVAR system.We fou...We analyzed cloud microphysical processes' latent heat characteristics and their influence on an autumn heavy rain event over Hainan Island,China,using the mesoscale numerical model WRF and WRF-3DVAR system.We found that positive latent heat occurred far above the zero layer,while negative latent heat occurred mainly under the zero layer.There was substantially more positive latent heat than negative latent heat,and the condensation heating had the most important contribution to the latent heat increase.The processes of deposition,congelation,melting and evaporation were all characterized by weakening after their intensification;however,the variations in condensation and sublimation processes were relatively small.The main cloud microphysical processes for positive latent heat were condensation of water vapor into cloud water,the condensation of rain,and the deposition increase of cloud ice,snow and graupel.The main cloud microphysical processes for negative latent heat were the evaporation of rain,the melting and enhanced melting of graupel.The latent heat releases due to different cloud microphysical processes have a significant impact on the intensity of precipitation.Without the condensation and evaporation of rain,the total latent heating would decrease and the moisture variables and precipitation would reduce significantly.Without deposition and sublimation,the heating in high levels would decrease and the precipitation would reduce.Without congelation and melting,the latent heating would enhance in the low levels,and the precipitation would reduce.展开更多
Using real-time data and the WRF mesoscale model,a heavy rain event in the process of Mesoscale Convective Complex(MCC) turning into banded Mesoscale Convective Systems(MCSs) during 18-19 June 2010 is simulated and an...Using real-time data and the WRF mesoscale model,a heavy rain event in the process of Mesoscale Convective Complex(MCC) turning into banded Mesoscale Convective Systems(MCSs) during 18-19 June 2010 is simulated and analyzed in this paper.The results indicated that the formation and maintenance of a southwest vortex and shear line at 850 h Pa was the mesoscale system that affected the production of this heavy rain.The low-vortex heavy rain mainly happened in the development stage of MCC,and the circular MCC turned into banded MCSs in the late stage with mainly shear line precipitation.In the vicinity of rainfall area,the intense horizontal vorticity due to the vertical shear of u and v caused the rotation,and in correspondence,the ascending branch of the vertical circulation triggered the formation of heavy rain.The different distributions of u and v in the vertical direction produced varying vertical circulations.The horizontal vorticity near the low-vortex and shear line had obvious differences which led to varying reasons for heavy rain formation.The low-vortex heavy rain was mainly caused by the vertical shear of v,and the shear line rainfall formed owing to the vertical shear of both u and v.In this process,the vertical shear of v constituted the EW-trending rain band along the shear line,and the latitudinal non-uniformity of the vertical shear in u caused the vertical motion,which was closely related to the generation and development of MCSs at the shear line and the formation of multiple rain clusters.There was also a similar difference in the positively-tilting term(conversion from horizontal vorticity to vertical positive vorticity) near the rainfall center between the low-vortex and the shear line.The conversion in the low vortex was mainly determined by бv/бp<0,while that of the shear line by бu/бp<0.The scale of the conversion from the horizontal vorticity to vertical vorticity was relatively small,and it was easily ignored in the averaged state.The twisting term was mainly conducive to the reinforcement of precipitation,whereas its contribution to the development of southwest vortex and shear line was relatively small.展开更多
Typhoon Rananim (0414) has been simulated by using the non-hydrostatic Advanced Regional Prediction System (ARPS) from Center of Analysis and Prediction of Storms (CAPS). The prediction of Rananim has generally ...Typhoon Rananim (0414) has been simulated by using the non-hydrostatic Advanced Regional Prediction System (ARPS) from Center of Analysis and Prediction of Storms (CAPS). The prediction of Rananim has generally been improved with ARPS using the new generation CINRAD Doppler radar data. Numerical experiments with or without using the radar data have shown that model initial fields with the assimilated radar radial velocity data in ARPS can change the wind field at the middle and high levels of the troposphere; fine characteristics of the tropical cyclone (TC) are introduced into the initial wind, the x component of wind speed south of the TC is increased and so is the y component west of it. They lead to improved forecasting of TC tracks for the time after landfall. The field of water vapor mixing ratio, temperature, cloud water mixing ratio and rainwater mixing ratio have also been improved by using radar refiectivity data. The model's initial response to the introduction of hydrometeors has been increased. It is shown that horizontal model resolution has a significant impact on intensity forecasts, by greatly improving the forecasting of TC rainfall, and heavy rainstorm of the TC specially, as well as its distribution and variation with time.展开更多
Large-scale and mesoscale analyses are made for extremely heavy rain (EHR) and meso-β scale low vortex (MSLV) in Jiading District of Shanghai Municipality during 6-7 July 2001.It is shown that the EHR forms in the si...Large-scale and mesoscale analyses are made for extremely heavy rain (EHR) and meso-β scale low vortex (MSLV) in Jiading District of Shanghai Municipality during 6-7 July 2001.It is shown that the EHR forms in the situation of northern westerly trough linking together with southern inverted typhoon trough at northwest side of the West Pacific Ocean subtropical high. Numerical simulation is made using a 21-layer improved REM (regional η coordinate model) for this course.The results show that the precipitation forms earlier than MSLV.and the strong convergence in wind velocity mate (WVM) triggers the strong precipitation.The formative reasons of WVM.especially the weak wind velocity center are discussed,and the formative mechanisms of the MSLV and EHR are discussed using high spatial and temporal resolution model- output physical fields.The results show that the heavy rain releases latent heat and warms the air column,and enhances the low level positive vorticity that existed before.Then it causes the formation of MSLV.There is a positive feedback mechanism between low vortex and precipitation,so CISK must be an important mechanism.展开更多
Surface heat and moisture fluxes are important to the evolution of a tropical storm after its landfall. Soil moisture is one of the essential components that influence surface heating and moisture fluxes. In this stud...Surface heat and moisture fluxes are important to the evolution of a tropical storm after its landfall. Soil moisture is one of the essential components that influence surface heating and moisture fluxes. In this study, the impact of soil moisture on a pre-landfall numerical simulation of Tropical Storm Bill(2015), which had a much longer lifespan over land, is investigated by using the research version of the NCEP Hurricane Weather Research and Forecasting(HWRF) model. It is found that increased soil moisture with SLAB scheme before storm's landfall tends to produce a weaker storm after landfall and has negative impacts on storm track simulation. Further diagnoses with different land surface schemes and sensitivity experiments indicate that the increase in soil moisture inside the storm corresponds to a strengthened vertical mixing within the storm boundary layer, which is conducive to the decay of storm and has negative impacts on storm evolution. In addition, surface diabatic heating effects over the storm environment are also found to be an important positive contribution to the storm evolution over land, but their impacts are not so substantial as boundary layer vertical mixing inside the storm. The overall results highlight the importance and uncertainty of soil moisture in numerical model simulations of landfalling hurricanes and their further evolution over land.展开更多
文摘A heavy rainfall process in Guangdong Province on 17-18 in June of 2009 was simulated by the mesoscale numerical model MM5 and was analyzed with the synoptic charts and satellite imagine.The results indicated that 500 hPa southern trough and 850 hPa shear line constituted the two systems of causing the weather process of heavy precipitation,whose favorable configuration was the focus of the heavy rain forecast.High-level westerly jet stream played an important role in this heavy rainfall process.With the 'suction effect' of strong upper-level jet divergence at 200 hPa level,the low-level shear line pressed southward,which made low-level warm damp air move upwards along the shear line so as to generate a strong upward motion,providing favorable background conditions for the occurrence and development of heavy precipitation.There was fairly good correspondence between 850 hPa horizontal helicity center and the influence system's development and movement.The distribution of horizontal helicity had a certain relationship with the falling areas of heavy precipitation.
基金National Natural Science Foundation of China(41275060)National Natural Science Foundation of China(41275145)+1 种基金National Key Basic Research Program of China(2014CB953903)Fundamental Research Funds for the Central Universities(131gjc03)
文摘We analyzed cloud microphysical processes' latent heat characteristics and their influence on an autumn heavy rain event over Hainan Island,China,using the mesoscale numerical model WRF and WRF-3DVAR system.We found that positive latent heat occurred far above the zero layer,while negative latent heat occurred mainly under the zero layer.There was substantially more positive latent heat than negative latent heat,and the condensation heating had the most important contribution to the latent heat increase.The processes of deposition,congelation,melting and evaporation were all characterized by weakening after their intensification;however,the variations in condensation and sublimation processes were relatively small.The main cloud microphysical processes for positive latent heat were condensation of water vapor into cloud water,the condensation of rain,and the deposition increase of cloud ice,snow and graupel.The main cloud microphysical processes for negative latent heat were the evaporation of rain,the melting and enhanced melting of graupel.The latent heat releases due to different cloud microphysical processes have a significant impact on the intensity of precipitation.Without the condensation and evaporation of rain,the total latent heating would decrease and the moisture variables and precipitation would reduce significantly.Without deposition and sublimation,the heating in high levels would decrease and the precipitation would reduce.Without congelation and melting,the latent heating would enhance in the low levels,and the precipitation would reduce.
基金National Program on Basic Research Project(973 Program)(2009CB421503,2013CB430103)National Natural Science Foundation of China(40975037)Construction of Advantageous Disciplines for Higher Education in Jiangsu Province,Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Using real-time data and the WRF mesoscale model,a heavy rain event in the process of Mesoscale Convective Complex(MCC) turning into banded Mesoscale Convective Systems(MCSs) during 18-19 June 2010 is simulated and analyzed in this paper.The results indicated that the formation and maintenance of a southwest vortex and shear line at 850 h Pa was the mesoscale system that affected the production of this heavy rain.The low-vortex heavy rain mainly happened in the development stage of MCC,and the circular MCC turned into banded MCSs in the late stage with mainly shear line precipitation.In the vicinity of rainfall area,the intense horizontal vorticity due to the vertical shear of u and v caused the rotation,and in correspondence,the ascending branch of the vertical circulation triggered the formation of heavy rain.The different distributions of u and v in the vertical direction produced varying vertical circulations.The horizontal vorticity near the low-vortex and shear line had obvious differences which led to varying reasons for heavy rain formation.The low-vortex heavy rain was mainly caused by the vertical shear of v,and the shear line rainfall formed owing to the vertical shear of both u and v.In this process,the vertical shear of v constituted the EW-trending rain band along the shear line,and the latitudinal non-uniformity of the vertical shear in u caused the vertical motion,which was closely related to the generation and development of MCSs at the shear line and the formation of multiple rain clusters.There was also a similar difference in the positively-tilting term(conversion from horizontal vorticity to vertical positive vorticity) near the rainfall center between the low-vortex and the shear line.The conversion in the low vortex was mainly determined by бv/бp<0,while that of the shear line by бu/бp<0.The scale of the conversion from the horizontal vorticity to vertical vorticity was relatively small,and it was easily ignored in the averaged state.The twisting term was mainly conducive to the reinforcement of precipitation,whereas its contribution to the development of southwest vortex and shear line was relatively small.
基金Technical Plan Key Project of Zhejiang Province (2006C13025)Key Subsidiary Project for Meteorological Science of Wenzhou (S200601)Technical Plan Key Project of Wenzhou (S2003A011)
文摘Typhoon Rananim (0414) has been simulated by using the non-hydrostatic Advanced Regional Prediction System (ARPS) from Center of Analysis and Prediction of Storms (CAPS). The prediction of Rananim has generally been improved with ARPS using the new generation CINRAD Doppler radar data. Numerical experiments with or without using the radar data have shown that model initial fields with the assimilated radar radial velocity data in ARPS can change the wind field at the middle and high levels of the troposphere; fine characteristics of the tropical cyclone (TC) are introduced into the initial wind, the x component of wind speed south of the TC is increased and so is the y component west of it. They lead to improved forecasting of TC tracks for the time after landfall. The field of water vapor mixing ratio, temperature, cloud water mixing ratio and rainwater mixing ratio have also been improved by using radar refiectivity data. The model's initial response to the introduction of hydrometeors has been increased. It is shown that horizontal model resolution has a significant impact on intensity forecasts, by greatly improving the forecasting of TC rainfall, and heavy rainstorm of the TC specially, as well as its distribution and variation with time.
基金supported by the Air Force Foundation under Grant No.KJ99099
文摘Large-scale and mesoscale analyses are made for extremely heavy rain (EHR) and meso-β scale low vortex (MSLV) in Jiading District of Shanghai Municipality during 6-7 July 2001.It is shown that the EHR forms in the situation of northern westerly trough linking together with southern inverted typhoon trough at northwest side of the West Pacific Ocean subtropical high. Numerical simulation is made using a 21-layer improved REM (regional η coordinate model) for this course.The results show that the precipitation forms earlier than MSLV.and the strong convergence in wind velocity mate (WVM) triggers the strong precipitation.The formative reasons of WVM.especially the weak wind velocity center are discussed,and the formative mechanisms of the MSLV and EHR are discussed using high spatial and temporal resolution model- output physical fields.The results show that the heavy rain releases latent heat and warms the air column,and enhances the low level positive vorticity that existed before.Then it causes the formation of MSLV.There is a positive feedback mechanism between low vortex and precipitation,so CISK must be an important mechanism.
基金Supported by the US National Science Foundation(AGS-1243027)National Natural Science Foundation of China(41805032)Fundamental Research Funds of the Central Universities(lzujbky-2017-71)
文摘Surface heat and moisture fluxes are important to the evolution of a tropical storm after its landfall. Soil moisture is one of the essential components that influence surface heating and moisture fluxes. In this study, the impact of soil moisture on a pre-landfall numerical simulation of Tropical Storm Bill(2015), which had a much longer lifespan over land, is investigated by using the research version of the NCEP Hurricane Weather Research and Forecasting(HWRF) model. It is found that increased soil moisture with SLAB scheme before storm's landfall tends to produce a weaker storm after landfall and has negative impacts on storm track simulation. Further diagnoses with different land surface schemes and sensitivity experiments indicate that the increase in soil moisture inside the storm corresponds to a strengthened vertical mixing within the storm boundary layer, which is conducive to the decay of storm and has negative impacts on storm evolution. In addition, surface diabatic heating effects over the storm environment are also found to be an important positive contribution to the storm evolution over land, but their impacts are not so substantial as boundary layer vertical mixing inside the storm. The overall results highlight the importance and uncertainty of soil moisture in numerical model simulations of landfalling hurricanes and their further evolution over land.