During the calendar year of 2012 the University of Louisiana at Lafayette in conjunction with CLECO Power LLC (CLECO) has constructed and commissioned a pilot scale parabolic trough solar thermal power plant for the f...During the calendar year of 2012 the University of Louisiana at Lafayette in conjunction with CLECO Power LLC (CLECO) has constructed and commissioned a pilot scale parabolic trough solar thermal power plant for the first time in Louisiana. The large aperture trough (LAT) solar collectors were provided by Gossamer Space Frames and are coupled with an organic Rankine cycle (ORC) power block provided by ElectraTherm, Inc. for study of the feasibility of cost-effective commercial scale solar thermal power production in Louisiana. Supported by CLECO and providing power to the existing CLECO grid, the implementation of state-of-the-industry collector frames, mirrors, trackers, and ORC power block is studied under various local weather conditions which present varied operating regimes from existing solar thermal installations. The solar collectors provide a design output of 650 kWth and preliminary actual performance data from the system level is presented. The optimal size, configuration and location for such a plant in the given solar resource region are being studied in conjunction with CLECO’s search for optimal renewable energy solutions for the region. The pilot scale size of the facility and implementation of the simpler ORC allow remote operation of the facility and flexibility in operating parameters for optimization studies. The construction of the facility was supported by the Louisiana Department of Natural Resources, the U.S. Department of Energy, and CLECO. The continued operation of the plant is supported by CLECO Power LLC and the University of Louisiana at Lafayette.展开更多
The target of the National Solar Mission is to build up India as a worldwide pioneer in solar energy generation. Solar power can be transmitted through grid either from solar photovoltaic or solar thermal technology. ...The target of the National Solar Mission is to build up India as a worldwide pioneer in solar energy generation. Solar power can be transmitted through grid either from solar photovoltaic or solar thermal technology. As compared to solar photovoltaic, solar thermal installations are less studied, especially regarding energy estimation and performance analysis. For estimating the potential of CSP plants, it is planned to simulate a power plant. We have marginally modified the design of 1 MW operational power plant installed at Gurgaon using Parabolic Trough Collector (PTC) technology. The results are compared with the expected output of Gurgaon power plant and also 50 MW power plant at Rajasthan. Our results have closely matched with a small deviation of 3.1% and 3.6% for Gurgaon and Rajasthan plants, respectively. Our developed model is also validated with 18 different solar power plants in different parts of the world by slightly modifying the parameters according to the plant capacity without changing major changes to the plant design. Difference between our results and the expected energy generation varied from 0.4% to 13.7% with an average deviation of 6.8%. As our results show less than 10% deviation as compared to the actual generation, an attempt has been made here to estimate the potential for the entire nation. For this modelling has been carried out for every grid station of 0.25° × 0.25° interval in India. Our results show that annual solar thermal power plant of 1 MW<sub>e</sub> capacity potential varies from 900 to 2700 MWh. We have also compared our results with previous studies and discussed.展开更多
This paper proposed a new type of combined cooling heating and power(CCHP)system,including the parabolic trough solar thermal(PTST)power generation and gas turbine power generation.The thermal energy storage subsystem...This paper proposed a new type of combined cooling heating and power(CCHP)system,including the parabolic trough solar thermal(PTST)power generation and gas turbine power generation.The thermal energy storage subsystem in the PTST unit provides both thermal energy and electrical energy.Based on the life cycle method,the configuration optimization under eight operation strategies is studied with the economy,energy,and environment indicators.The eight operation strategies include FEL,FEL-EC,FEL-TES,FEL-TES&EC,FTL,FTL-EC,FTL-TES,and FTL-TES&EC.The feasibility of each strategy is verified by taking a residential building cluster as an example.The indicators under the optimal configuration of each strategy are compared with that of the separate production(SP)system.The results showed that the PTST-CCHP system improves the environment and energy performance by changing the ratio of thermal energy and electric energy.The environment and energy indicators of FEL-TES&EC are superior to those of FTL-TES&EC in summer,and the results are just the opposite in winter.The initial annual investment of the PTST-CCHP system is higher than that of the SP system,but its economic performance is better than that of the SP system with the increase of life-cycle.展开更多
采用模块化建模方法研究了无蓄热装置再循环方式直接产生蒸汽型抛物面槽式太阳能热动力发电站(solar thermal power plant using direct steam generation in parabolic trough collectors filed,DSG-PTCs-STTP)热力系统动态仿真模型。...采用模块化建模方法研究了无蓄热装置再循环方式直接产生蒸汽型抛物面槽式太阳能热动力发电站(solar thermal power plant using direct steam generation in parabolic trough collectors filed,DSG-PTCs-STTP)热力系统动态仿真模型。依照守恒定律和热力学、传热学、流体力学等基本关系式,在一定简化条件下,研究了抛物面槽式聚光集热系统的聚光器、预热段、蒸发段、过热段及汽水缓冲分离器的数学模型,结合其他已有的仿真模型(如流体网络、汽轮机、凝汽器、除氧器、水泵、发电励磁等过程及设备模型等),建立了完整的DSG-PTCs-STTP热力系统实时动态仿真模型。仿真试验表明所开发的仿真模型能够正确反映研究对象热力系统动态特性和全工况运行过程,模型运算稳定可靠。可用于DSG-PTCs-STTP机组实时仿真系统的开发,还可为机组运行特性研究和控制系统验证提供良好的非线性对象模型。展开更多
在对槽型抛物面集热器所吸收的有效辐射进行系统分析的基础上,改进了末端效应的计算方法,提出了以入射辐射强度(incident direct insolation,IDI)替代直射辐射强度(direct normal insolation,DNI)作为当地太阳能资源评估标准的见解.根...在对槽型抛物面集热器所吸收的有效辐射进行系统分析的基础上,改进了末端效应的计算方法,提出了以入射辐射强度(incident direct insolation,IDI)替代直射辐射强度(direct normal insolation,DNI)作为当地太阳能资源评估标准的见解.根据计算结果,以分别处于纬度29.43°N和43.47°N的拉萨市和内蒙古奈曼为例,从全年的角度来看,拉萨的DNI值超出IDI值14.33%,而纬度较高的奈曼则相差22.43%之多;从系统模拟分析的结果来看,在槽型抛物面太阳能电站选址时,采用IDI值比DNI值更加合理.展开更多
文摘During the calendar year of 2012 the University of Louisiana at Lafayette in conjunction with CLECO Power LLC (CLECO) has constructed and commissioned a pilot scale parabolic trough solar thermal power plant for the first time in Louisiana. The large aperture trough (LAT) solar collectors were provided by Gossamer Space Frames and are coupled with an organic Rankine cycle (ORC) power block provided by ElectraTherm, Inc. for study of the feasibility of cost-effective commercial scale solar thermal power production in Louisiana. Supported by CLECO and providing power to the existing CLECO grid, the implementation of state-of-the-industry collector frames, mirrors, trackers, and ORC power block is studied under various local weather conditions which present varied operating regimes from existing solar thermal installations. The solar collectors provide a design output of 650 kWth and preliminary actual performance data from the system level is presented. The optimal size, configuration and location for such a plant in the given solar resource region are being studied in conjunction with CLECO’s search for optimal renewable energy solutions for the region. The pilot scale size of the facility and implementation of the simpler ORC allow remote operation of the facility and flexibility in operating parameters for optimization studies. The construction of the facility was supported by the Louisiana Department of Natural Resources, the U.S. Department of Energy, and CLECO. The continued operation of the plant is supported by CLECO Power LLC and the University of Louisiana at Lafayette.
文摘The target of the National Solar Mission is to build up India as a worldwide pioneer in solar energy generation. Solar power can be transmitted through grid either from solar photovoltaic or solar thermal technology. As compared to solar photovoltaic, solar thermal installations are less studied, especially regarding energy estimation and performance analysis. For estimating the potential of CSP plants, it is planned to simulate a power plant. We have marginally modified the design of 1 MW operational power plant installed at Gurgaon using Parabolic Trough Collector (PTC) technology. The results are compared with the expected output of Gurgaon power plant and also 50 MW power plant at Rajasthan. Our results have closely matched with a small deviation of 3.1% and 3.6% for Gurgaon and Rajasthan plants, respectively. Our developed model is also validated with 18 different solar power plants in different parts of the world by slightly modifying the parameters according to the plant capacity without changing major changes to the plant design. Difference between our results and the expected energy generation varied from 0.4% to 13.7% with an average deviation of 6.8%. As our results show less than 10% deviation as compared to the actual generation, an attempt has been made here to estimate the potential for the entire nation. For this modelling has been carried out for every grid station of 0.25° × 0.25° interval in India. Our results show that annual solar thermal power plant of 1 MW<sub>e</sub> capacity potential varies from 900 to 2700 MWh. We have also compared our results with previous studies and discussed.
基金supported by the National Natural Science Foundation of China(Grant No.51667013)the Research on Scheduling Control Technology of Photothermal Power Generation of The Power System with High Proportion New Energy on The Supply End(Grant No.SGGSKY00FJJS1900273).
文摘This paper proposed a new type of combined cooling heating and power(CCHP)system,including the parabolic trough solar thermal(PTST)power generation and gas turbine power generation.The thermal energy storage subsystem in the PTST unit provides both thermal energy and electrical energy.Based on the life cycle method,the configuration optimization under eight operation strategies is studied with the economy,energy,and environment indicators.The eight operation strategies include FEL,FEL-EC,FEL-TES,FEL-TES&EC,FTL,FTL-EC,FTL-TES,and FTL-TES&EC.The feasibility of each strategy is verified by taking a residential building cluster as an example.The indicators under the optimal configuration of each strategy are compared with that of the separate production(SP)system.The results showed that the PTST-CCHP system improves the environment and energy performance by changing the ratio of thermal energy and electric energy.The environment and energy indicators of FEL-TES&EC are superior to those of FTL-TES&EC in summer,and the results are just the opposite in winter.The initial annual investment of the PTST-CCHP system is higher than that of the SP system,but its economic performance is better than that of the SP system with the increase of life-cycle.
文摘采用模块化建模方法研究了无蓄热装置再循环方式直接产生蒸汽型抛物面槽式太阳能热动力发电站(solar thermal power plant using direct steam generation in parabolic trough collectors filed,DSG-PTCs-STTP)热力系统动态仿真模型。依照守恒定律和热力学、传热学、流体力学等基本关系式,在一定简化条件下,研究了抛物面槽式聚光集热系统的聚光器、预热段、蒸发段、过热段及汽水缓冲分离器的数学模型,结合其他已有的仿真模型(如流体网络、汽轮机、凝汽器、除氧器、水泵、发电励磁等过程及设备模型等),建立了完整的DSG-PTCs-STTP热力系统实时动态仿真模型。仿真试验表明所开发的仿真模型能够正确反映研究对象热力系统动态特性和全工况运行过程,模型运算稳定可靠。可用于DSG-PTCs-STTP机组实时仿真系统的开发,还可为机组运行特性研究和控制系统验证提供良好的非线性对象模型。
文摘在对槽型抛物面集热器所吸收的有效辐射进行系统分析的基础上,改进了末端效应的计算方法,提出了以入射辐射强度(incident direct insolation,IDI)替代直射辐射强度(direct normal insolation,DNI)作为当地太阳能资源评估标准的见解.根据计算结果,以分别处于纬度29.43°N和43.47°N的拉萨市和内蒙古奈曼为例,从全年的角度来看,拉萨的DNI值超出IDI值14.33%,而纬度较高的奈曼则相差22.43%之多;从系统模拟分析的结果来看,在槽型抛物面太阳能电站选址时,采用IDI值比DNI值更加合理.