Mining machineries are generally exposed to intensive vibrations in harsh mining environment. If vibrations are beyond the tolerable limit, the machine and its operator health will be under the risk. In this work, the...Mining machineries are generally exposed to intensive vibrations in harsh mining environment. If vibrations are beyond the tolerable limit, the machine and its operator health will be under the risk. In this work, the vibration of a mining truck at different operational conditions are simulated and discussed. To achieve this aim, three haul roads with low, medium and poor qualities are considered based on the ISO standard. Accordingly, the vibration of a mining truck in different speeds, payload and distribution qualities of materials in the dump body are evaluated in each haul road quality using Trucksim software. The simulation results with statistical discussions indicate that the truck speed and the materials distribution quality have significant effects on the root mean square(RMS) of vertical vibrations. However, the effect of the payload is not considerable on the RMS. Moreover, the accumulation of materials on the rear side of the truck dump body is efficient on the vibrational health risk.展开更多
To evaluate the operator health risk exposed to whole-body vibration(WBV) while the electric-shovel loads the ore on the truck body, the semi-truck mathematical model and 3-D virtual prototype were built to simulate t...To evaluate the operator health risk exposed to whole-body vibration(WBV) while the electric-shovel loads the ore on the truck body, the semi-truck mathematical model and 3-D virtual prototype were built to simulate the high shockwave of truck cab under the shovel loading. Discrete element method was utilized to accurately estimate the impacting force on the truck body. Based on the ISO 2631-5 criteria, the Sed is about 0.56 MPa in both models, which means that the dump operators have a high probability of adverse health effects over long-term exposure to these vibrations. The 4-DOF operator model was built to investigate the biodynamic response of seated-human body exposed to WBV in terms of the transmission of vibrations through the body. The results show that the response peak is in the frequency range of 4-6 Hz corresponding to the primary body resonant frequency.展开更多
文摘Mining machineries are generally exposed to intensive vibrations in harsh mining environment. If vibrations are beyond the tolerable limit, the machine and its operator health will be under the risk. In this work, the vibration of a mining truck at different operational conditions are simulated and discussed. To achieve this aim, three haul roads with low, medium and poor qualities are considered based on the ISO standard. Accordingly, the vibration of a mining truck in different speeds, payload and distribution qualities of materials in the dump body are evaluated in each haul road quality using Trucksim software. The simulation results with statistical discussions indicate that the truck speed and the materials distribution quality have significant effects on the root mean square(RMS) of vertical vibrations. However, the effect of the payload is not considerable on the RMS. Moreover, the accumulation of materials on the rear side of the truck dump body is efficient on the vibrational health risk.
基金Project(2006BAB11B03)supported by the National Key Technology Research and Development Program of ChinaProject(Z1011030055010004)supported by Beijing Municipal Science Program of China
文摘To evaluate the operator health risk exposed to whole-body vibration(WBV) while the electric-shovel loads the ore on the truck body, the semi-truck mathematical model and 3-D virtual prototype were built to simulate the high shockwave of truck cab under the shovel loading. Discrete element method was utilized to accurately estimate the impacting force on the truck body. Based on the ISO 2631-5 criteria, the Sed is about 0.56 MPa in both models, which means that the dump operators have a high probability of adverse health effects over long-term exposure to these vibrations. The 4-DOF operator model was built to investigate the biodynamic response of seated-human body exposed to WBV in terms of the transmission of vibrations through the body. The results show that the response peak is in the frequency range of 4-6 Hz corresponding to the primary body resonant frequency.