The capturability of the Three-Dimensional(3D)Realistic True Proportional Navigation(RTPN)guidance law is thoroughly analyzed.The true-arbitrarily maneuvering target is considered,which maneuvers along an arbitrary di...The capturability of the Three-Dimensional(3D)Realistic True Proportional Navigation(RTPN)guidance law is thoroughly analyzed.The true-arbitrarily maneuvering target is considered,which maneuvers along an arbitrary direction in 3D space with an arbitrary but upperbounded acceleration.The whole nonlinear relative kinematics between the interceptor and target is taken into account.First,the upper-bound of commanded acceleration of 3D RTPN is deduced,using a novel Lyapunov-like approach.Second,the reasonable selection range of navigation gain of3D RTPN is analyzed,when the maneuver limitation of interceptor is considered.After that,a more realistic definition of capture is adopted,i.e.,the relative range is smaller than an acceptable miss-distance while the approaching speed is larger than a required impact speed.Unlike previous researches which present Two-Dimensional(2D)capture regions,the inequality analysis technique is utilized to obtain the 3D capture region,where the three coordinates are the closing speed,transversal relative speed,and relative range.The obtained capture region could be taken as a sufficient-but-unnecessary condition of capture.The new theoretical findings are all given in explicit expressions and are more general than previous results.展开更多
The capturability of an arbitrarily maneuvering target featuring speed superiority over an interceptor is analyzed for Augmented Pure Proportional Navigation(APPN)and RetroAugmented Proportional Navigation(RAPN)guidan...The capturability of an arbitrarily maneuvering target featuring speed superiority over an interceptor is analyzed for Augmented Pure Proportional Navigation(APPN)and RetroAugmented Proportional Navigation(RAPN)guidance.This paper focuses on intercepting arbitrary maneuvers to study more general interception problems.A comparative analysis of the capture region between head-on interception related to APPN and head-pursuit interception related to RAPN is proposed.The results indicate that RAPN performs better than APPN in capturability.It is concluded that increasing the target velocity,which increases the velocity ratio,significantly weakens the capturability of the interceptor,and the average acceleration and relative distance affect the location of the capture region but not its size.The analysis is based on prior knowledge of the target maneuver,which inevitably leads to deviations from actual maneuvers in practical engagement,so a deviation analysis is implemented.The effective capture region shrinks as the absolute value of acceleration deviation increases,and the RAPN has a better deviation fault tolerance compared with the APPN.The results reveal that a larger relative distance can weaken the deviation fault tolerance,and the target velocity has opposite effects on head-on and head-pursuit interception.展开更多
This paper develops a novel approach and some main results on the varying-speed missile guided by pure proportional navigation(PPN)against a stationary target in the planar interception problem.The missile kinematic e...This paper develops a novel approach and some main results on the varying-speed missile guided by pure proportional navigation(PPN)against a stationary target in the planar interception problem.The missile kinematic equation is established in the arc-length domain based on the differential geometry theory,which eliminates the influence of time-varying missile speed.Then,the closed-form solutions of line-of-sight(LOS)rate,leading angle,closing speed,and curvature command are derived in the arc-length domain.The performance of the varyingspeed missile is analyzed,including the maximum relative distance,maximum curvature command,accurate path-to-go,and curvature increment.Additionally,the capture region is obtained considering the missile maneuvering acceleration limit.These new theoretical results could be extended to improve the performance of existing guidance laws designed under the constant-speed assumption.展开更多
基金supported in part by the National Natural Science Foundation of China(No.12002370)in part by the Hunan Provincial Natural Science Foundation of China(No.2019JJ50736)。
文摘The capturability of the Three-Dimensional(3D)Realistic True Proportional Navigation(RTPN)guidance law is thoroughly analyzed.The true-arbitrarily maneuvering target is considered,which maneuvers along an arbitrary direction in 3D space with an arbitrary but upperbounded acceleration.The whole nonlinear relative kinematics between the interceptor and target is taken into account.First,the upper-bound of commanded acceleration of 3D RTPN is deduced,using a novel Lyapunov-like approach.Second,the reasonable selection range of navigation gain of3D RTPN is analyzed,when the maneuver limitation of interceptor is considered.After that,a more realistic definition of capture is adopted,i.e.,the relative range is smaller than an acceptable miss-distance while the approaching speed is larger than a required impact speed.Unlike previous researches which present Two-Dimensional(2D)capture regions,the inequality analysis technique is utilized to obtain the 3D capture region,where the three coordinates are the closing speed,transversal relative speed,and relative range.The obtained capture region could be taken as a sufficient-but-unnecessary condition of capture.The new theoretical findings are all given in explicit expressions and are more general than previous results.
基金the National Natural Science Foundation of China(No.62073335)the Science Fund for Distinguished Young People in Shaanxi Province,China(No.2022JC-42)the China Postdoctoral Science Foundation(Nos.2017M613201,2019T120944 and 2020M683737).
文摘The capturability of an arbitrarily maneuvering target featuring speed superiority over an interceptor is analyzed for Augmented Pure Proportional Navigation(APPN)and RetroAugmented Proportional Navigation(RAPN)guidance.This paper focuses on intercepting arbitrary maneuvers to study more general interception problems.A comparative analysis of the capture region between head-on interception related to APPN and head-pursuit interception related to RAPN is proposed.The results indicate that RAPN performs better than APPN in capturability.It is concluded that increasing the target velocity,which increases the velocity ratio,significantly weakens the capturability of the interceptor,and the average acceleration and relative distance affect the location of the capture region but not its size.The analysis is based on prior knowledge of the target maneuver,which inevitably leads to deviations from actual maneuvers in practical engagement,so a deviation analysis is implemented.The effective capture region shrinks as the absolute value of acceleration deviation increases,and the RAPN has a better deviation fault tolerance compared with the APPN.The results reveal that a larger relative distance can weaken the deviation fault tolerance,and the target velocity has opposite effects on head-on and head-pursuit interception.
基金supported by the National Natural Science Foundation of China(Grant No.12002370).
文摘This paper develops a novel approach and some main results on the varying-speed missile guided by pure proportional navigation(PPN)against a stationary target in the planar interception problem.The missile kinematic equation is established in the arc-length domain based on the differential geometry theory,which eliminates the influence of time-varying missile speed.Then,the closed-form solutions of line-of-sight(LOS)rate,leading angle,closing speed,and curvature command are derived in the arc-length domain.The performance of the varyingspeed missile is analyzed,including the maximum relative distance,maximum curvature command,accurate path-to-go,and curvature increment.Additionally,the capture region is obtained considering the missile maneuvering acceleration limit.These new theoretical results could be extended to improve the performance of existing guidance laws designed under the constant-speed assumption.