Slabbing failure often occurs in the surround rock near a deep underground excavation. The mechanism of slabbing failure is still unclear. In order to reveal the influence of the intermediate principal stress (σ2) ...Slabbing failure often occurs in the surround rock near a deep underground excavation. The mechanism of slabbing failure is still unclear. In order to reveal the influence of the intermediate principal stress (σ2) on slabbing failure, true triaxial unloading compressive test was carried out based on the stress path of the underground engineering excavation, i.e., unloading the minimum principal stress (σ3), keeping σ2, increasing the maximum principal stress (σ1). The initiation and the propagation of slabbing fracture in rock specimens were identified by examining the acoustic emission (AE) and the infrared radiation characterization. The test results show that the failure modes of the granite and red sandstone specimens are changed from shear to slabbing with the increase of σ2. The AE characteristic of rock specimen under low σ2 is swarm type which is the main shock type under high σ2. The infrared radiation properties of rock specimen under different σ2 are also different. The temperature change area is just along the shear fracture such as the uniaxial compression. With the increase of σ2, the temperature change area is planar of rock specimen which proofs that the failure mode of rock specimen turns into slabbing.展开更多
It has become an inevitable trend of human development to seek resources from the deep underground.However,rock encountered in deep underground engineering is usually in an anisotropic stress state(σ_(1)>σ>σ_...It has become an inevitable trend of human development to seek resources from the deep underground.However,rock encountered in deep underground engineering is usually in an anisotropic stress state(σ_(1)>σ>σ_(3))due to the influences of geological structures and engineering disturbances.It is therefore essential to study the mechanical,seepage,and dynamic disaster behaviors of deep rock under true triaxial stress to ensure the safe operation of deep rock engineering and the efficient exploitation of deep resources.In recent years,experimental techniques and research on true triaxial rock mechanics have achieved fruitful results that have promoted the rapid development of deep rock mechanics;thus,it is necessary to systematically review and summarize these developments.This work first introduced several typical true triaxial testing apparatus and then reviewed the corresponding research progress on rock deformation,strength,failure mode,brittleness,and energy as well as the 3D volumetric fracturing(dynamic disaster)properties of deep rocks under true triaxial stress.Then,several commonly used true triaxial rock strength criteria and their applicability,the permeability characteristics and mathematical models of deep reservoir rocks,and the disaster-causing processes and mechanisms of disturbed volumetric fracturing(rockburst,compound dynamic disasters)in deep rock engineering were described.This work may provide an essential reference for addressing the true triaxial rock mechanics issues involved in deep rock engineering,especially regarding the stability of surrounding rock at depth,disaster prevention and control,and oil and gas exploitation.展开更多
Precisely understanding the dynamic mechanical properties and failure modes of rocks subjected to true triaxial stress state(σ1>σ2>σ3,whereσ1,σ2,andσ3 are the major principal stress,intermediate principal ...Precisely understanding the dynamic mechanical properties and failure modes of rocks subjected to true triaxial stress state(σ1>σ2>σ3,whereσ1,σ2,andσ3 are the major principal stress,intermediate principal stress,and minor principal stress,respectively)is essential to the safety of underground engineering.However,in the laboratory,it is difficult to maintain the constant true triaxial stress state of rocks during the dynamic testing process.Herein,a numerical servo triaxial Hopkinson bar(NSTHB)was developed to study the dynamic responses of rocks confronted with a true triaxial stress state,in which lateral stresses can maintain constant.The results indicate that the dynamic strength and elastic modulus of rocks increase with the rise of intermediate principal stressσ2,while the dynamic elastic modulus is independent of the dynamic strain rate.Simulated acoustic emission distributions indicate that the intermediate principal stressσ2 dramatically affects dynamic failure modes of triaxial confined rocks.Asσ2 increases,the failure pattern switches from a single diagonal shear zone into two parallel shear zones with a small slant.Moreover,a recent triaxial Hopkinson bar experimental system using three bar pairs is also numerically established,and the measuring discrepancies are identified between the two numerical bar systems.The proposed NSTHB system provides a controllable tool for studying the dynamic triaxial behavior of rocks.展开更多
As main part of underground rock mass,the three-dimensional(3D)morphology of natural fractures plays an important role in rock mass stability.Based on previous studies on 3D morphology,this study probes into the law a...As main part of underground rock mass,the three-dimensional(3D)morphology of natural fractures plays an important role in rock mass stability.Based on previous studies on 3D morphology,this study probes into the law and mechanism regarding the influence of the confining pressure constraints on 3D morphological features of natural fractures.First,fracture surfaces were obtained by true triaxial compression test and 3D laser scanning.Then 3D morphological parameters of fractures were calculated by using Grasselli’s model.The results show that the failure mode of granites developed by true triaxial stress can be categorized into tension failure and shear failure.Based on the spatial position of fractures,they can be divided into tension fracture surface,S-1 shear fracture surface,and S-2 shear fracture surface.Micro-failure of the tension fracture surface is dominated by mainly intergranular fracture;the maximum height of asperities on the fracture surface and the 3D roughness of fracture surfaces are influenced by σ_(3) only and they are greater than those of shear fracture surfaces,a lower overall uniformity than tension fracture surface.S-1 shear fracture surface and S-2 shear fracture surface are dominated by intragranular and intergranular coupling fracture.The maximum height of asperities on the fracture surface and 3D roughness of fracture surface are affected by σ_(1),σ_(2),and σ_(3).With the increase of σ_(2) or σ_(3),the cutting off of asperities on the fracture surface becomes more common,the maximum height of asperities and 3D roughness of fracture surface further decrease,and the overall uniformity gets further improved.The experimental results are favorable for selecting technical parameters of enhanced geothermal development and the safety of underground mine engineering.展开更多
Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stre...Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stress on the intact rock strength are investigated and compared with laboratory results from the literature. To normalize differences in laboratory testing conditions, the stress state is used as the objective parameter in the artificial neural network model predictions. The variations of major principal stress of rock material with intermediate principal stress, minor principal stress and stress state are investigated. The artificial neural network simulations show that for the rock types examined, none were independent of intermediate principal stress effects. In addition, the results of the artificial neural network models, in general agreement with observations made by others, show (a) a general trend of strength increasing and reaching a peak at some intermediate stress state factor, followed by a decline in strength for most rock types; (b) a post-peak strength behavior dependent on the minor principal stress, with respect to rock type; (c) sensitivity to the stress state, and to the interaction between the stress state and uniaxial compressive strength of the test data by the artificial neural networks models (two-way analysis of variance; 95% confidence interval). Artificial neural network modeling, a self-learning approach to polyaxial stress simulation, can thus complement the commonly observed difficult task of conducting true triaxial laboratory tests, and/or other methods that attempt to improve two-dimensional (2D) failure criteria by incorporating intermediate principal stress effects.展开更多
This study investigates the impact of intermediate(σ_(2))and minimum(σ_(3))principal stress unloading on damage behavior and the confining pressure influence on crack initiation stress(σci)in true triaxial stress c...This study investigates the impact of intermediate(σ_(2))and minimum(σ_(3))principal stress unloading on damage behavior and the confining pressure influence on crack initiation stress(σci)in true triaxial stress conditions,utilizing large-scale cubic samples.Two distinct true triaxial tests were executed,examining the effects of confining stress(σ_(2)andσ_(3))unloading on porous sandstone damage and the correlation between confining stress andσci.Acoustic emission(AE)parameters,signal characteristics,and wave velocity variations were utilized to elucidate cracking mechanisms and damage development in the samples.Unloading tests reveal consistent ve-locities in three orthogonal directions(V_(11),V_(22),and V_(33))during the initial two unloading stages.In the subse-quent three stages,confining stress unloading leads to a decrease in wave velocity in the corresponding direction,while velocities in the other two directions remain nearly constant.Notably,σ_(2)unloading generates higher amplitude AE signals compared toσ_(3)unloading,with over 70%of the micro-cracks categorized as tensile.In the incremental loading tests,σ_(ci) is found to be contingent on confining pressure,withσ_(2)playing a crucial role.Duringσ_(1) loading,V_(33) decreases,indicating additional crack formation;conversely,σ_(3)loading results in V33 increase,signifying the continuous closure of existing cracks.Limitations of the experiments are summarized and prospects in this domain are outlined.展开更多
Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-powe...Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-power microwave subsystem (100 kW), a true triaxial testing machine, a dynamic monitoring subsystem, and an electromagnetic shielding subsystem. It can realize rapid microwave-induced fracturing, intelligent tuning of impedance, dynamic feedback under strong microwave fields, and active control of microwave parameters by addressing the following issues: the instability and insecurity of the system, the discharge breakdown between coaxial lines during high-power microwave output, and a lack of feedback of rock-microwave response. In this study, microwave-induced surface and borehole fracturing tests under true triaxial stress were carried out. Experimental comparisons imply that high-power microwave irradiation can reduce the fracturing time of hard rock and that the fracture range (160 mm) of a 915-MHz microwave source is about three times that of 2.45 GHz. After microwave-induced borehole fracturing, many tensile cracks occur on the rock surface and in the borehole: the maximum reduction of the P-wave velocity is 12.8%. The test results show that a high-power microwave source of 915 MHz is more conducive to assisting mechanical rock breaking and destressing. The system can promote the development of microwave-assisted rock breaking equipment.展开更多
This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) ...This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) around tunnels in a clay shale formation known as Opalinus Clay. The 3D FDEM was first calibratedagainst standard laboratory experiments, including Brazilian disc test and uniaxial compression test. Theeffect of increasing confining pressure on the mechanical response and fracture propagation of the rockwas quantified under triaxial compression tests. Polyaxial (or true triaxial) simulations highlighted theeffect of the intermediate principal stress (s2) on fracture directions in the model: as the intermediateprincipal stress increased, fractures tended to align in the direction parallel to the plane defined by themajor and intermediate principal stresses. The peak strength was also shown to vary with changing s2. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The deep surrounding rock is usually in the true triaxial stress state,and previous constitutive models based on the understanding of uniaxial and conventional triaxial test results have difficulty characterizing the ...The deep surrounding rock is usually in the true triaxial stress state,and previous constitutive models based on the understanding of uniaxial and conventional triaxial test results have difficulty characterizing the degradation and fracture process of rock ductile–brittle failure under true triaxial stress state.Therefore,this study conducted a series of true triaxial tests to obtain the understanding of the ductile–brittle behaviour of rock,and then combined the test results and the Mogi–Coulomb strength criterion,and proposed calculation methods for the elastic modulus E,cohesion c and internal friction angle u and the evolution functions of E,c and u of rock under true triaxial stresses.With the decreasing of the minimum principal stress r3 or increasing of the intermediate principal stress r2,the marble post-peak stress drop rate gradually increases,the ductility gradually weakens,and the brittleness significantly strengthens.The calculation method and evolution function of rock E,c and u under true triaxial stress were proposed.E decreased at first and then tended to remain stable with the increasing of equivalent plastic strain increment dep.c and u slowly increased at first and then rapidly decreased.With a method of parameter degradation rate to realize post-peak stress drop rate to reflect the ductile–brittle characteristics,a new three-dimensional ductile–brittle deterioration mechanical model(3DBDM)was established.The proposed model can accurately characterize the influence of r2 and r3 on mechanical parameters,the ductile–brittle behaviour of rock under true triaxial stresses,and the asymmetric failure characteristics of surrounding rock after excavation of deep underground engineering.The proposed model can be reduced to elastic–perfectly plastic,elastic–brittle,cohesion weakening friction strengthening(CWFS),Mohr–Coulomb,and Drucker–Prager models.展开更多
基金Project(2010CB732004)supported by the National Basic Research Program of ChinaProjects(50934006,11102239)supported by the National Natural Science Foundation of China
文摘Slabbing failure often occurs in the surround rock near a deep underground excavation. The mechanism of slabbing failure is still unclear. In order to reveal the influence of the intermediate principal stress (σ2) on slabbing failure, true triaxial unloading compressive test was carried out based on the stress path of the underground engineering excavation, i.e., unloading the minimum principal stress (σ3), keeping σ2, increasing the maximum principal stress (σ1). The initiation and the propagation of slabbing fracture in rock specimens were identified by examining the acoustic emission (AE) and the infrared radiation characterization. The test results show that the failure modes of the granite and red sandstone specimens are changed from shear to slabbing with the increase of σ2. The AE characteristic of rock specimen under low σ2 is swarm type which is the main shock type under high σ2. The infrared radiation properties of rock specimen under different σ2 are also different. The temperature change area is just along the shear fracture such as the uniaxial compression. With the increase of σ2, the temperature change area is planar of rock specimen which proofs that the failure mode of rock specimen turns into slabbing.
基金This research was supported by the National Natural Science Foundation of China(No.52104209)the Postdoctoral Research Foundation of China(No.2021M692192)+1 种基金the National Natural Science Foundation of China(Nos.51827901 and 52174082)the Program for Guangdong Introducing Innovative and Entrepre-neurial Teams(No.2019ZT08G315).
文摘It has become an inevitable trend of human development to seek resources from the deep underground.However,rock encountered in deep underground engineering is usually in an anisotropic stress state(σ_(1)>σ>σ_(3))due to the influences of geological structures and engineering disturbances.It is therefore essential to study the mechanical,seepage,and dynamic disaster behaviors of deep rock under true triaxial stress to ensure the safe operation of deep rock engineering and the efficient exploitation of deep resources.In recent years,experimental techniques and research on true triaxial rock mechanics have achieved fruitful results that have promoted the rapid development of deep rock mechanics;thus,it is necessary to systematically review and summarize these developments.This work first introduced several typical true triaxial testing apparatus and then reviewed the corresponding research progress on rock deformation,strength,failure mode,brittleness,and energy as well as the 3D volumetric fracturing(dynamic disaster)properties of deep rocks under true triaxial stress.Then,several commonly used true triaxial rock strength criteria and their applicability,the permeability characteristics and mathematical models of deep reservoir rocks,and the disaster-causing processes and mechanisms of disturbed volumetric fracturing(rockburst,compound dynamic disasters)in deep rock engineering were described.This work may provide an essential reference for addressing the true triaxial rock mechanics issues involved in deep rock engineering,especially regarding the stability of surrounding rock at depth,disaster prevention and control,and oil and gas exploitation.
基金the financial support from the National Natural Science Foundation of China(Nos.52039007 and 52009086)the Sichuan Province Youth Science and Technology Innovation Team(No.2020JDTD0001)。
文摘Precisely understanding the dynamic mechanical properties and failure modes of rocks subjected to true triaxial stress state(σ1>σ2>σ3,whereσ1,σ2,andσ3 are the major principal stress,intermediate principal stress,and minor principal stress,respectively)is essential to the safety of underground engineering.However,in the laboratory,it is difficult to maintain the constant true triaxial stress state of rocks during the dynamic testing process.Herein,a numerical servo triaxial Hopkinson bar(NSTHB)was developed to study the dynamic responses of rocks confronted with a true triaxial stress state,in which lateral stresses can maintain constant.The results indicate that the dynamic strength and elastic modulus of rocks increase with the rise of intermediate principal stressσ2,while the dynamic elastic modulus is independent of the dynamic strain rate.Simulated acoustic emission distributions indicate that the intermediate principal stressσ2 dramatically affects dynamic failure modes of triaxial confined rocks.Asσ2 increases,the failure pattern switches from a single diagonal shear zone into two parallel shear zones with a small slant.Moreover,a recent triaxial Hopkinson bar experimental system using three bar pairs is also numerically established,and the measuring discrepancies are identified between the two numerical bar systems.The proposed NSTHB system provides a controllable tool for studying the dynamic triaxial behavior of rocks.
基金support from the National Natural Science Foundation of China(Nos.51974173 and 52004147)the Natural Science Foundation of Shandong Province(Nos.ZR2020QD122 and ZR2020QE129).
文摘As main part of underground rock mass,the three-dimensional(3D)morphology of natural fractures plays an important role in rock mass stability.Based on previous studies on 3D morphology,this study probes into the law and mechanism regarding the influence of the confining pressure constraints on 3D morphological features of natural fractures.First,fracture surfaces were obtained by true triaxial compression test and 3D laser scanning.Then 3D morphological parameters of fractures were calculated by using Grasselli’s model.The results show that the failure mode of granites developed by true triaxial stress can be categorized into tension failure and shear failure.Based on the spatial position of fractures,they can be divided into tension fracture surface,S-1 shear fracture surface,and S-2 shear fracture surface.Micro-failure of the tension fracture surface is dominated by mainly intergranular fracture;the maximum height of asperities on the fracture surface and the 3D roughness of fracture surfaces are influenced by σ_(3) only and they are greater than those of shear fracture surfaces,a lower overall uniformity than tension fracture surface.S-1 shear fracture surface and S-2 shear fracture surface are dominated by intragranular and intergranular coupling fracture.The maximum height of asperities on the fracture surface and 3D roughness of fracture surface are affected by σ_(1),σ_(2),and σ_(3).With the increase of σ_(2) or σ_(3),the cutting off of asperities on the fracture surface becomes more common,the maximum height of asperities and 3D roughness of fracture surface further decrease,and the overall uniformity gets further improved.The experimental results are favorable for selecting technical parameters of enhanced geothermal development and the safety of underground mine engineering.
文摘Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stress on the intact rock strength are investigated and compared with laboratory results from the literature. To normalize differences in laboratory testing conditions, the stress state is used as the objective parameter in the artificial neural network model predictions. The variations of major principal stress of rock material with intermediate principal stress, minor principal stress and stress state are investigated. The artificial neural network simulations show that for the rock types examined, none were independent of intermediate principal stress effects. In addition, the results of the artificial neural network models, in general agreement with observations made by others, show (a) a general trend of strength increasing and reaching a peak at some intermediate stress state factor, followed by a decline in strength for most rock types; (b) a post-peak strength behavior dependent on the minor principal stress, with respect to rock type; (c) sensitivity to the stress state, and to the interaction between the stress state and uniaxial compressive strength of the test data by the artificial neural networks models (two-way analysis of variance; 95% confidence interval). Artificial neural network modeling, a self-learning approach to polyaxial stress simulation, can thus complement the commonly observed difficult task of conducting true triaxial laboratory tests, and/or other methods that attempt to improve two-dimensional (2D) failure criteria by incorporating intermediate principal stress effects.
基金supported by the German Research Foundation(DFG,No.491064630).
文摘This study investigates the impact of intermediate(σ_(2))and minimum(σ_(3))principal stress unloading on damage behavior and the confining pressure influence on crack initiation stress(σci)in true triaxial stress conditions,utilizing large-scale cubic samples.Two distinct true triaxial tests were executed,examining the effects of confining stress(σ_(2)andσ_(3))unloading on porous sandstone damage and the correlation between confining stress andσci.Acoustic emission(AE)parameters,signal characteristics,and wave velocity variations were utilized to elucidate cracking mechanisms and damage development in the samples.Unloading tests reveal consistent ve-locities in three orthogonal directions(V_(11),V_(22),and V_(33))during the initial two unloading stages.In the subse-quent three stages,confining stress unloading leads to a decrease in wave velocity in the corresponding direction,while velocities in the other two directions remain nearly constant.Notably,σ_(2)unloading generates higher amplitude AE signals compared toσ_(3)unloading,with over 70%of the micro-cracks categorized as tensile.In the incremental loading tests,σ_(ci) is found to be contingent on confining pressure,withσ_(2)playing a crucial role.Duringσ_(1) loading,V_(33) decreases,indicating additional crack formation;conversely,σ_(3)loading results in V33 increase,signifying the continuous closure of existing cracks.Limitations of the experiments are summarized and prospects in this domain are outlined.
基金support from the Na-tional Natural Science Foundation of China(Grant No.41827806)the liaoning Revitalization Talent Program of China(Grant No.XLYCYSZX1902).
文摘Microwave pre-treatment is considered as a promising technique for alleviating cutter wear. This paper introduces a high-power microwave-induced fracturing system for hard rock. The test system consists of a high-power microwave subsystem (100 kW), a true triaxial testing machine, a dynamic monitoring subsystem, and an electromagnetic shielding subsystem. It can realize rapid microwave-induced fracturing, intelligent tuning of impedance, dynamic feedback under strong microwave fields, and active control of microwave parameters by addressing the following issues: the instability and insecurity of the system, the discharge breakdown between coaxial lines during high-power microwave output, and a lack of feedback of rock-microwave response. In this study, microwave-induced surface and borehole fracturing tests under true triaxial stress were carried out. Experimental comparisons imply that high-power microwave irradiation can reduce the fracturing time of hard rock and that the fracture range (160 mm) of a 915-MHz microwave source is about three times that of 2.45 GHz. After microwave-induced borehole fracturing, many tensile cracks occur on the rock surface and in the borehole: the maximum reduction of the P-wave velocity is 12.8%. The test results show that a high-power microwave source of 915 MHz is more conducive to assisting mechanical rock breaking and destressing. The system can promote the development of microwave-assisted rock breaking equipment.
文摘This study presents the first step of a research project that aims at using a three-dimensional (3D) hybridfinite-discrete element method (FDEM) to investigate the development of an excavation damaged zone(EDZ) around tunnels in a clay shale formation known as Opalinus Clay. The 3D FDEM was first calibratedagainst standard laboratory experiments, including Brazilian disc test and uniaxial compression test. Theeffect of increasing confining pressure on the mechanical response and fracture propagation of the rockwas quantified under triaxial compression tests. Polyaxial (or true triaxial) simulations highlighted theeffect of the intermediate principal stress (s2) on fracture directions in the model: as the intermediateprincipal stress increased, fractures tended to align in the direction parallel to the plane defined by themajor and intermediate principal stresses. The peak strength was also shown to vary with changing s2. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金financial support received from the National Natural Science Foundation of China(Grant No.52109119)the Changjiang River Scientific Research Institute Open Research Program(Grant No.CKWV20221014/KY)+3 种基金the Guangxi Natural Science Foundation(Grant No.2021GXNSFBA075030)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(Grant No.IWHR-SKL-202202)the Guangxi Science and Technology Project(Grant No.GuikeAD20325002)the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Engineering Safety(Grant No.2020ZDK007)。
文摘The deep surrounding rock is usually in the true triaxial stress state,and previous constitutive models based on the understanding of uniaxial and conventional triaxial test results have difficulty characterizing the degradation and fracture process of rock ductile–brittle failure under true triaxial stress state.Therefore,this study conducted a series of true triaxial tests to obtain the understanding of the ductile–brittle behaviour of rock,and then combined the test results and the Mogi–Coulomb strength criterion,and proposed calculation methods for the elastic modulus E,cohesion c and internal friction angle u and the evolution functions of E,c and u of rock under true triaxial stresses.With the decreasing of the minimum principal stress r3 or increasing of the intermediate principal stress r2,the marble post-peak stress drop rate gradually increases,the ductility gradually weakens,and the brittleness significantly strengthens.The calculation method and evolution function of rock E,c and u under true triaxial stress were proposed.E decreased at first and then tended to remain stable with the increasing of equivalent plastic strain increment dep.c and u slowly increased at first and then rapidly decreased.With a method of parameter degradation rate to realize post-peak stress drop rate to reflect the ductile–brittle characteristics,a new three-dimensional ductile–brittle deterioration mechanical model(3DBDM)was established.The proposed model can accurately characterize the influence of r2 and r3 on mechanical parameters,the ductile–brittle behaviour of rock under true triaxial stresses,and the asymmetric failure characteristics of surrounding rock after excavation of deep underground engineering.The proposed model can be reduced to elastic–perfectly plastic,elastic–brittle,cohesion weakening friction strengthening(CWFS),Mohr–Coulomb,and Drucker–Prager models.