True proportional navigation(TPN) guidance law is widely used for exoatmospheric interception, for its robustness and ease of implementation. The performance of TPN against nonmaneuvering target or the maneuvering tar...True proportional navigation(TPN) guidance law is widely used for exoatmospheric interception, for its robustness and ease of implementation. The performance of TPN against nonmaneuvering target or the maneuvering target with a specific acceleration had been analyzed before. However, the obtained results are not suitable for the realistic exoatmospheric interception scenario,since the target may maneuver along an arbitrary direction with an arbitrary but upper-bounded acceleration in the threedimensional(3 D) space, which is the so-called "true-arbitrarily maneuvering target" in this paper. With the help of the line-ofsight(LOS) rotation coordinate system, the performance of 3 D TPN against the true-arbitrarily maneuvering target is thoroughly analyzed using the Lyapunov-like approach. The upper-bound of the 3 D LOS rate is obtained, and so is that of the commanded acceleration of 3 D TPN. After that, the capture region of 3 D TPN is presented on the initial relative velocity plane. The nonlinear3 D relative kinematics between the interceptor and the target is taken into full account. Finally, the new theoretical findings are demonstrated by numerical simulations.展开更多
The capturability of the Three-Dimensional(3D)Realistic True Proportional Navigation(RTPN)guidance law is thoroughly analyzed.The true-arbitrarily maneuvering target is considered,which maneuvers along an arbitrary di...The capturability of the Three-Dimensional(3D)Realistic True Proportional Navigation(RTPN)guidance law is thoroughly analyzed.The true-arbitrarily maneuvering target is considered,which maneuvers along an arbitrary direction in 3D space with an arbitrary but upperbounded acceleration.The whole nonlinear relative kinematics between the interceptor and target is taken into account.First,the upper-bound of commanded acceleration of 3D RTPN is deduced,using a novel Lyapunov-like approach.Second,the reasonable selection range of navigation gain of3D RTPN is analyzed,when the maneuver limitation of interceptor is considered.After that,a more realistic definition of capture is adopted,i.e.,the relative range is smaller than an acceptable miss-distance while the approaching speed is larger than a required impact speed.Unlike previous researches which present Two-Dimensional(2D)capture regions,the inequality analysis technique is utilized to obtain the 3D capture region,where the three coordinates are the closing speed,transversal relative speed,and relative range.The obtained capture region could be taken as a sufficient-but-unnecessary condition of capture.The new theoretical findings are all given in explicit expressions and are more general than previous results.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61690210 and 61690213)
文摘True proportional navigation(TPN) guidance law is widely used for exoatmospheric interception, for its robustness and ease of implementation. The performance of TPN against nonmaneuvering target or the maneuvering target with a specific acceleration had been analyzed before. However, the obtained results are not suitable for the realistic exoatmospheric interception scenario,since the target may maneuver along an arbitrary direction with an arbitrary but upper-bounded acceleration in the threedimensional(3 D) space, which is the so-called "true-arbitrarily maneuvering target" in this paper. With the help of the line-ofsight(LOS) rotation coordinate system, the performance of 3 D TPN against the true-arbitrarily maneuvering target is thoroughly analyzed using the Lyapunov-like approach. The upper-bound of the 3 D LOS rate is obtained, and so is that of the commanded acceleration of 3 D TPN. After that, the capture region of 3 D TPN is presented on the initial relative velocity plane. The nonlinear3 D relative kinematics between the interceptor and the target is taken into full account. Finally, the new theoretical findings are demonstrated by numerical simulations.
基金supported in part by the National Natural Science Foundation of China(No.12002370)in part by the Hunan Provincial Natural Science Foundation of China(No.2019JJ50736)。
文摘The capturability of the Three-Dimensional(3D)Realistic True Proportional Navigation(RTPN)guidance law is thoroughly analyzed.The true-arbitrarily maneuvering target is considered,which maneuvers along an arbitrary direction in 3D space with an arbitrary but upperbounded acceleration.The whole nonlinear relative kinematics between the interceptor and target is taken into account.First,the upper-bound of commanded acceleration of 3D RTPN is deduced,using a novel Lyapunov-like approach.Second,the reasonable selection range of navigation gain of3D RTPN is analyzed,when the maneuver limitation of interceptor is considered.After that,a more realistic definition of capture is adopted,i.e.,the relative range is smaller than an acceptable miss-distance while the approaching speed is larger than a required impact speed.Unlike previous researches which present Two-Dimensional(2D)capture regions,the inequality analysis technique is utilized to obtain the 3D capture region,where the three coordinates are the closing speed,transversal relative speed,and relative range.The obtained capture region could be taken as a sufficient-but-unnecessary condition of capture.The new theoretical findings are all given in explicit expressions and are more general than previous results.