Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Pain...Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Painlev'e expansion method by introducing an intermediate expansion method. Then the generalized (G′/G)-(G/G′) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlev'e expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the ( G′/ G)-expansion method.展开更多
A predator prey interaction of both populations was treated by the Painlevé analysis method. The analytic solutions for the related equations was obtained using the truncated Painlevé expansion.
In this paper,we consider the(2+1)-dimensional Chaffee-Infante equation,which occurs in the fields of fluid dynamics,high-energy physics,electronic science etc.We build Bäcklund transformations and residual symme...In this paper,we consider the(2+1)-dimensional Chaffee-Infante equation,which occurs in the fields of fluid dynamics,high-energy physics,electronic science etc.We build Bäcklund transformations and residual symmetries in nonlocal structure using the Painlevétruncated expansion approach.We use a prolonged system to localize these symmetries and establish the associated one-parameter Lie transformation group.In this transformation group,we deliver new exact solution profiles via the combination of various simple(seed and tangent hyperbolic form)exact solution structures.In this manner,we acquire an infinite amount of exact solution forms methodically.Furthermore,we demonstrate that the model may be integrated in terms of consistent Riccati expansion.Using the Maple symbolic program,we derive the exact solution forms of solitary-wave and soliton-cnoidal interaction.Through 3D and 2D illustrations,we observe the dynamic analysis of the acquired solution forms.展开更多
This paper mainly discusses the(2+1)-dimensional modified dispersive water-wave(MDWW) system which will be proved nonlinear self-adjointness. This property is applied to construct conservation laws corresponding to th...This paper mainly discusses the(2+1)-dimensional modified dispersive water-wave(MDWW) system which will be proved nonlinear self-adjointness. This property is applied to construct conservation laws corresponding to the symmetries of the system. Moreover, via the truncated Painlev′e analysis and consistent tanh-function expansion(CTE)method, the soliton-cnoidal periodic wave interaction solutions and corresponding images will be eventually achieved.展开更多
In this paper, the truncated Painleve analysis and the consistent tanh expansion (CTE) method are developed for the (2+1)-dimensional breaking soliton equation. As a result, the soliton-cnoidal wave interaction s...In this paper, the truncated Painleve analysis and the consistent tanh expansion (CTE) method are developed for the (2+1)-dimensional breaking soliton equation. As a result, the soliton-cnoidal wave interaction solution of the equation is explicitly given, which is dimcult to be found by other traditional methods. When the value of the Jacobi elliptic function modulus rn = 1, the soliton-cnoidal wave interaction solution reduces back to the two-soliton solution. The method can also be extended to other types of nonlinear evolution equations in mathematical physics.展开更多
基金Project supported by the National Key Basic Research Project of China (Grant No. 2004CB318000)the National Natural Science Foundation of China (Grant No. 10771072)
文摘Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Painlev'e expansion method by introducing an intermediate expansion method. Then the generalized (G′/G)-(G/G′) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlev'e expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the ( G′/ G)-expansion method.
文摘A predator prey interaction of both populations was treated by the Painlevé analysis method. The analytic solutions for the related equations was obtained using the truncated Painlevé expansion.
文摘In this paper,we consider the(2+1)-dimensional Chaffee-Infante equation,which occurs in the fields of fluid dynamics,high-energy physics,electronic science etc.We build Bäcklund transformations and residual symmetries in nonlocal structure using the Painlevétruncated expansion approach.We use a prolonged system to localize these symmetries and establish the associated one-parameter Lie transformation group.In this transformation group,we deliver new exact solution profiles via the combination of various simple(seed and tangent hyperbolic form)exact solution structures.In this manner,we acquire an infinite amount of exact solution forms methodically.Furthermore,we demonstrate that the model may be integrated in terms of consistent Riccati expansion.Using the Maple symbolic program,we derive the exact solution forms of solitary-wave and soliton-cnoidal interaction.Through 3D and 2D illustrations,we observe the dynamic analysis of the acquired solution forms.
基金Supported by National Natural Science Foundation of China under Grant Nos.11371293,11505090the Natural Science Foundation of Shaanxi Province under Grant No.2014JM2-1009+1 种基金Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No.BS2015SF009the Science and Technology Innovation Foundation of Xi’an under Grant No.CYX1531WL41
文摘This paper mainly discusses the(2+1)-dimensional modified dispersive water-wave(MDWW) system which will be proved nonlinear self-adjointness. This property is applied to construct conservation laws corresponding to the symmetries of the system. Moreover, via the truncated Painlev′e analysis and consistent tanh-function expansion(CTE)method, the soliton-cnoidal periodic wave interaction solutions and corresponding images will be eventually achieved.
基金Supported by National Natural Science Foundation of China under Grant Nos.11271211,11275072,11435005K.C.Wong Magna Fund in Ningbo University
文摘In this paper, the truncated Painleve analysis and the consistent tanh expansion (CTE) method are developed for the (2+1)-dimensional breaking soliton equation. As a result, the soliton-cnoidal wave interaction solution of the equation is explicitly given, which is dimcult to be found by other traditional methods. When the value of the Jacobi elliptic function modulus rn = 1, the soliton-cnoidal wave interaction solution reduces back to the two-soliton solution. The method can also be extended to other types of nonlinear evolution equations in mathematical physics.