期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Truncated SVD-Based ARIMA Model for Multiple QoS Prediction in Mobile Edge Computing 被引量:12
1
作者 Chao Yan Yankun Zhang +2 位作者 Weiyi Zhong Can Zhang Baogui Xin 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2022年第2期315-324,共10页
In the mobile edge computing environments,Quality of Service(QoS)prediction plays a crucial role in web service recommendation.Because of distinct features of mobile edge computing,i.e.,the mobility of users and incom... In the mobile edge computing environments,Quality of Service(QoS)prediction plays a crucial role in web service recommendation.Because of distinct features of mobile edge computing,i.e.,the mobility of users and incomplete historical QoS data,traditional QoS prediction approaches may obtain less accurate results in the mobile edge computing environments.In this paper,we treat the historical QoS values at different time slots as a temporal sequence of QoS matrices.By incorporating the compressed matrices extracted from QoS matrices through truncated Singular Value Decomposition(SVD)with the classical ARIMA model,we extend the ARIMA model to predict multiple QoS values simultaneously and efficiently.Experimental results show that our proposed approach outperforms the other state-of-the-art approaches in accuracy and efficiency. 展开更多
关键词 edge computing QoS prediction Auto Regressive Integrated Moving Average(ARIMA) truncated Singular Value Decomposition(svd)
原文传递
An iterative algorithm for solving ill-conditioned linear least squares problems 被引量:8
2
作者 Deng Xingsheng Yin Liangbo +1 位作者 Peng Sichun Ding Meiqing 《Geodesy and Geodynamics》 2015年第6期453-459,共7页
Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics... Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics and geosciences, where regularization algorithms are employed to seek optimal solutions. For many problems, even with the use of regularization algorithms it may be impossible to obtain an accurate solution. Riley and Golub suggested an iterative scheme for solving LLS problems. For the early iteration algorithm, it is difficult to improve the well-conditioned perturbed matrix and accelerate the convergence at the same time. Aiming at this problem, self-adaptive iteration algorithm(SAIA) is proposed in this paper for solving severe ill-conditioned LLS problems. The algorithm is different from other popular algorithms proposed in recent references. It avoids matrix inverse by using Cholesky decomposition, and tunes the perturbation parameter according to the rate of residual error decline in the iterative process. Example shows that the algorithm can greatly reduce iteration times, accelerate the convergence,and also greatly enhance the computation accuracy. 展开更多
关键词 Severe ill-conditioned matrix Linear least squares problems Self-adaptive Iterative scheme Cholesky decomposition Regularization parameter Tikhonov solution truncated svd solution
下载PDF
INTERPOLATION OF HEAD-RELATED TRANSFER FUNCTIONS USING SPHERICAL FOURIER EXPANSION 被引量:1
3
作者 Huang Qinghua Fang Yong 《Journal of Electronics(China)》 2009年第4期571-576,共6页
A new interpolation algorithm for Head-Related Transfer Function (HRTF) is proposed to realize 3D sound reproduction via headphones in arbitrary spatial direction. HRTFs are modeled as a weighted sum of spherical ha... A new interpolation algorithm for Head-Related Transfer Function (HRTF) is proposed to realize 3D sound reproduction via headphones in arbitrary spatial direction. HRTFs are modeled as a weighted sum of spherical harmonics on a spherical surface. Truncated Singular Value Decomposition (SVD) is adopted to calculate the weights of the model. The truncation number is chosen according to Frobenius norm ratio and the partial condition number. Compared with other interpolated methods, our proposed approach not only is continuous but exploits global information of available directions. The HRTF from any desired direction can be and interpolated results demonstrate that our obtained more accurately and robustly. Reconstructed proposed algorithm acquired better performance. 展开更多
关键词 Head-Related Transfer Function (HRTF) INTERPOLATION Spherical Fourier Expansion (SFE) truncated Singular Value Decomposition svd Partial condition number
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部