A new interpolation algorithm for Head-Related Transfer Function (HRTF) is proposed to realize 3D sound reproduction via headphones in arbitrary spatial direction. HRTFs are modeled as a weighted sum of spherical ha...A new interpolation algorithm for Head-Related Transfer Function (HRTF) is proposed to realize 3D sound reproduction via headphones in arbitrary spatial direction. HRTFs are modeled as a weighted sum of spherical harmonics on a spherical surface. Truncated Singular Value Decomposition (SVD) is adopted to calculate the weights of the model. The truncation number is chosen according to Frobenius norm ratio and the partial condition number. Compared with other interpolated methods, our proposed approach not only is continuous but exploits global information of available directions. The HRTF from any desired direction can be and interpolated results demonstrate that our obtained more accurately and robustly. Reconstructed proposed algorithm acquired better performance.展开更多
Mie theory is a rigorous solution to scattering problems in spherical coordinate system. The first step in applying Mie theory is expansion of some arbitrary incident field in terms of spherical harmonics fields in te...Mie theory is a rigorous solution to scattering problems in spherical coordinate system. The first step in applying Mie theory is expansion of some arbitrary incident field in terms of spherical harmonics fields in terms of spherical which in turn requires evaluation of certain definite integrals whose integrands are products of Bessel functions, associated Legendre functions and periodic functions. Here we present analytical results for two specific integrals that are encountered in expansion of arbitrary fields in terms of summation of spherical waves. The analytical results are in terms of finite summations which include Lommel functions. A concise analytical expression is also derived for the special case of Lommel functions that arise, rendering expensive numerical integration or other iterative techniques unnecessary.展开更多
As early as in 1990, Professor Sun Yongsheng, suggested his students at Beijing Normal University to consider research problems on the unit sphere. Under his guidance and encouragement his students started the researc...As early as in 1990, Professor Sun Yongsheng, suggested his students at Beijing Normal University to consider research problems on the unit sphere. Under his guidance and encouragement his students started the research on spherical harmonic analysis and approximation. In this paper, we incompletely introduce the main achievements in this area obtained by our group and relative researchers during recent 5 years (2001-2005). The main topics are: convergence of Cesaro summability, a.e. and strong summability of Fourier-Laplace series; smoothness and K-functionals; Kolmogorov and linear widths.展开更多
基金Supported by Shanghai Natural Science Foundation, Shanghai Leading Academic Discipline Project, and STCSM of China (No. 08ZR1408300, S30108, and 08DZ2231100)
文摘A new interpolation algorithm for Head-Related Transfer Function (HRTF) is proposed to realize 3D sound reproduction via headphones in arbitrary spatial direction. HRTFs are modeled as a weighted sum of spherical harmonics on a spherical surface. Truncated Singular Value Decomposition (SVD) is adopted to calculate the weights of the model. The truncation number is chosen according to Frobenius norm ratio and the partial condition number. Compared with other interpolated methods, our proposed approach not only is continuous but exploits global information of available directions. The HRTF from any desired direction can be and interpolated results demonstrate that our obtained more accurately and robustly. Reconstructed proposed algorithm acquired better performance.
文摘Mie theory is a rigorous solution to scattering problems in spherical coordinate system. The first step in applying Mie theory is expansion of some arbitrary incident field in terms of spherical harmonics fields in terms of spherical which in turn requires evaluation of certain definite integrals whose integrands are products of Bessel functions, associated Legendre functions and periodic functions. Here we present analytical results for two specific integrals that are encountered in expansion of arbitrary fields in terms of summation of spherical waves. The analytical results are in terms of finite summations which include Lommel functions. A concise analytical expression is also derived for the special case of Lommel functions that arise, rendering expensive numerical integration or other iterative techniques unnecessary.
基金Supported by the NSF of China under the Grant 10471010partially by the NSERC Canada under Grant G121211001
文摘As early as in 1990, Professor Sun Yongsheng, suggested his students at Beijing Normal University to consider research problems on the unit sphere. Under his guidance and encouragement his students started the research on spherical harmonic analysis and approximation. In this paper, we incompletely introduce the main achievements in this area obtained by our group and relative researchers during recent 5 years (2001-2005). The main topics are: convergence of Cesaro summability, a.e. and strong summability of Fourier-Laplace series; smoothness and K-functionals; Kolmogorov and linear widths.