This paper investigates double sampling series derivatives for bivariate functions defined on R2 that are in the Bernstein space. For this sampling series, we estimate some of the pointwise and uniform bounds when the...This paper investigates double sampling series derivatives for bivariate functions defined on R2 that are in the Bernstein space. For this sampling series, we estimate some of the pointwise and uniform bounds when the function satisfies some decay conditions. The truncated series of this formula allow us to approximate any order of partial derivatives for function from Bernstein space using only a finite number of samples from the function itself. This sampling formula will be useful in the approximation theory and its applications, especially after having the truncation error well-established. Examples with tables and figures are given at the end of the paper to illustrate the advantages of this formula.展开更多
Branched continued fractions are one of the multidimensional generalization of the continued fractions. Branched continued fractions with not equivalent variables are an analog of the regular C-fractions for multiple ...Branched continued fractions are one of the multidimensional generalization of the continued fractions. Branched continued fractions with not equivalent variables are an analog of the regular C-fractions for multiple power series. We consider 1-periodic branched continued fraction of the special form which is an analog fraction with not equivalent variables if the values of that variables are fixed. We establish an analog of the parabola theorem for that fraction and estimate truncation error bounds for that fractions at some restrictions. We also propose to use weight coefficients for obtaining different parabolic regions for the same fraction without any additional restriction for first element.展开更多
文摘This paper investigates double sampling series derivatives for bivariate functions defined on R2 that are in the Bernstein space. For this sampling series, we estimate some of the pointwise and uniform bounds when the function satisfies some decay conditions. The truncated series of this formula allow us to approximate any order of partial derivatives for function from Bernstein space using only a finite number of samples from the function itself. This sampling formula will be useful in the approximation theory and its applications, especially after having the truncation error well-established. Examples with tables and figures are given at the end of the paper to illustrate the advantages of this formula.
文摘Branched continued fractions are one of the multidimensional generalization of the continued fractions. Branched continued fractions with not equivalent variables are an analog of the regular C-fractions for multiple power series. We consider 1-periodic branched continued fraction of the special form which is an analog fraction with not equivalent variables if the values of that variables are fixed. We establish an analog of the parabola theorem for that fraction and estimate truncation error bounds for that fractions at some restrictions. We also propose to use weight coefficients for obtaining different parabolic regions for the same fraction without any additional restriction for first element.