A class of trust region methods for solving linear inequality constrained problems is proposed in this paper. It is shown that the algorithm is of global convergence.The algorithm uses a version of the two-sided proje...A class of trust region methods for solving linear inequality constrained problems is proposed in this paper. It is shown that the algorithm is of global convergence.The algorithm uses a version of the two-sided projection and the strategy of the unconstrained trust region methods. It keeps the good convergence properties of the unconstrained case and has the merits of the projection method. In some sense, our algorithm can be regarded as an extension and improvement of the projected type algorithm.展开更多
In this paper, we propose and analyze a non-monotone trust region method with non-monotone line search strategy for unconstrained optimization problems. Unlike the traditional non-monotone trust region method, our alg...In this paper, we propose and analyze a non-monotone trust region method with non-monotone line search strategy for unconstrained optimization problems. Unlike the traditional non-monotone trust region method, our algorithm utilizes non-monotone Wolfe line search to get the next point if a trial step is not adopted. Thus, it can reduce the number of solving sub-problems. Theoretical analysis shows that the new proposed method has a global convergence under some mild conditions.展开更多
This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the gl...This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the global convergence of this algorithm is proved without assuming the linear independence of the gradient of active constraints. A numerical example is also presented.展开更多
Trust region (TR) algorithms are a class of recently developed algorithms for nonlinear optimization. A new family of TR algorithms for unconstrained optimization, which is the extension of the usual TR method, is pre...Trust region (TR) algorithms are a class of recently developed algorithms for nonlinear optimization. A new family of TR algorithms for unconstrained optimization, which is the extension of the usual TR method, is presented in this paper. When the objective function is bounded below and continuously, differentiable, and the norm of the Hesse approximations increases at most linearly with the iteration number, we prove the global convergence of the algorithms. Limited numerical results are reported, which indicate that our new TR algorithm is competitive.展开更多
In this paper,we propose an improved trust region method for solving unconstrained optimization problems.Different with traditional trust region methods,our algorithm does not resolve the subproblem within the trust r...In this paper,we propose an improved trust region method for solving unconstrained optimization problems.Different with traditional trust region methods,our algorithm does not resolve the subproblem within the trust region centered at the current iteration point,but within an improved one centered at some point located in the direction of the negative gradient,while the current iteration point is on the boundary set.We prove the global convergence properties of the new improved trust region algorithm and give the computational results which demonstrate the effectiveness of our algorithm.展开更多
A class of nonmonotone trust region algorithms is presented for unconstrained optimizations. Under suitable conditions, the global and Q quadratic convergences of the algorithm are proved. Several rules of choosing tr...A class of nonmonotone trust region algorithms is presented for unconstrained optimizations. Under suitable conditions, the global and Q quadratic convergences of the algorithm are proved. Several rules of choosing trial steps and trust region radii are also discussed.展开更多
We propose a nonmonotone adaptive trust region method based on simple conic model for unconstrained optimization. Unlike traditional trust region methods, the subproblem in our method is a simple conic model, where th...We propose a nonmonotone adaptive trust region method based on simple conic model for unconstrained optimization. Unlike traditional trust region methods, the subproblem in our method is a simple conic model, where the Hessian of the objective function is approximated by a scalar matrix. The trust region radius is adjusted with a new self-adaptive adjustment strategy which makes use of the information of the previous iteration and current iteration. The new method needs less memory and computational efforts. The global convergence and Q-superlinear convergence of the algorithm are established under the mild conditions. Numerical results on a series of standard test problems are reported to show that the new method is effective and attractive for large scale unconstrained optimization problems.展开更多
A new trust region algorithm for solving convex LC 1 optimization problem is presented.It is proved that the algorithm is globally convergent and the rate of convergence is superlinear under some reasonable assum...A new trust region algorithm for solving convex LC 1 optimization problem is presented.It is proved that the algorithm is globally convergent and the rate of convergence is superlinear under some reasonable assumptions.展开更多
Based on the nonmonotone line search technique proposed by Gu and Mo (Appl. Math. Comput. 55, (2008) pp. 2158-2172), a new nonmonotone trust region algorithm is proposed for solving unconstrained optimization prob...Based on the nonmonotone line search technique proposed by Gu and Mo (Appl. Math. Comput. 55, (2008) pp. 2158-2172), a new nonmonotone trust region algorithm is proposed for solving unconstrained optimization problems in this paper. The new algorithm is developed by resetting the ratio ρk for evaluating the trial step dk whenever acceptable. The global and superlinear convergence of the algorithm are proved under suitable conditions. Numerical results show that the new algorithm is effective for solving unconstrained optimization problems.展开更多
In this paper, we combine the nonmonotone and adaptive techniques with trust region method for unconstrained minimization problems. We set a new ratio of the actual descent and predicted descent. Then, instead of the ...In this paper, we combine the nonmonotone and adaptive techniques with trust region method for unconstrained minimization problems. We set a new ratio of the actual descent and predicted descent. Then, instead of the monotone sequence, the nonmonotone sequence of function values are employed. With the adaptive technique, the radius of trust region △k can be adjusted automatically to improve the efficiency of trust region methods. By means of the Bunch-Parlett factorization, we construct a method with indefinite dogleg path for solving the trust region subproblem which can handle the indefinite approximate Hessian Bk. The convergence properties of the algorithm are established. Finally, detailed numerical results are reported to show that our algorithm is efficient.展开更多
It is well known that trust region methods are very effective for optimization problems. In this article, a new adaptive trust region method is presented for solving uncon- strained optimization problems. The proposed...It is well known that trust region methods are very effective for optimization problems. In this article, a new adaptive trust region method is presented for solving uncon- strained optimization problems. The proposed method combines a modified secant equation with the BFGS updated formula and an adaptive trust region radius, where the new trust region radius makes use of not only the function information but also the gradient information. Under suitable conditions, global convergence is proved, and we demonstrate the local superlinear convergence of the proposed method. The numerical results indicate that the proposed method is very efficient.展开更多
The trust region method plays an important role in solving optimization problems. In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems. Actually, we ...The trust region method plays an important role in solving optimization problems. In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems. Actually, we combine a popular nonmonotone technique with an adaptive trust region algorithm. The new ratio to adjusting the next trust region radius is different from the ratio in the traditional trust region methods. Under some appropriate conditions, we show that the new algorithm has good global convergence and superlinear convergence.展开更多
In this note, the following unconstrained nonsmooth optimization problem is considered where f(x):R^n→R is only a locally Lipschitzian function. Many papers appear on the convergence properties of the trust region al...In this note, the following unconstrained nonsmooth optimization problem is considered where f(x):R^n→R is only a locally Lipschitzian function. Many papers appear on the convergence properties of the trust region algorithm to solve several different particular nonsmooth problems. Dennis, Li and Tapia proposed a general trust region model by using regular functions. They proved the global convergence of the general trust region model under some mild conditions which are shown to be satisfied by many trust region algorithms including smooth one. Qi and Sun provided another trust region model展开更多
In this paper, a new trust region subproblem is proposed. The trust radius in the new subproblem adjusts itself adaptively. As a result, an adaptive trust region method is constructed based on the new trust region sub...In this paper, a new trust region subproblem is proposed. The trust radius in the new subproblem adjusts itself adaptively. As a result, an adaptive trust region method is constructed based on the new trust region subproblem. The local and global convergence results of the adaptive trust region method are proved.Numerical results indicate that the new method is very efficient.展开更多
A trust region algorithm for equality constrained optimization is proposed, which is a nonmonotone one in a certain sense. The augmented Lagrangian function is used as a merit function. Under certain conditions, the g...A trust region algorithm for equality constrained optimization is proposed, which is a nonmonotone one in a certain sense. The augmented Lagrangian function is used as a merit function. Under certain conditions, the global convergence theorems of the algorithm are proved.展开更多
In this paper, a new trust region method with simple model for solving large-scale unconstrained nonlinear optimization is proposed. By employing the generalized weak quasi-Newton equations, we derive several schemes ...In this paper, a new trust region method with simple model for solving large-scale unconstrained nonlinear optimization is proposed. By employing the generalized weak quasi-Newton equations, we derive several schemes to construct variants of scalar matrices as the Hessian approximation used in the trust region subproblem. Under some reasonable conditions, global convergence of the proposed algorithm is established in the trust region framework. The numerical experiments on solving the test problems with dimensions from 50 to 20,000 in the CUTEr library are reported to show efficiency of the algorithm.展开更多
Presents an inexact trust region algorithm for solving constrained nonsmooth optimization problems. Global convergence of the algorithm; Assumptions on the algorithm; Relation between critical points and stationary po...Presents an inexact trust region algorithm for solving constrained nonsmooth optimization problems. Global convergence of the algorithm; Assumptions on the algorithm; Relation between critical points and stationary points.展开更多
This paper presents a trust region algorithm with null space technique fornonlinear equality constrained optimization. Considering in the null space methods that,the convergent rate of range space step is faster than ...This paper presents a trust region algorithm with null space technique fornonlinear equality constrained optimization. Considering in the null space methods that,the convergent rate of range space step is faster than the null space step for the most cases,the proposed algorithm computes null steps more often than range space step. Moreover,the new algorithm is based on the reduced Hessian SQP method. Global convergence ofthe proposed algorithm is proved. The effectiveness of the method is demonstrated bysome numerical examples.展开更多
In this paper, a trust region method for equality constrained optimizationbased on nondifferentiable exact penalty is proposed. In this algorithm, the trail step ischaracterized by computation of its normal component ...In this paper, a trust region method for equality constrained optimizationbased on nondifferentiable exact penalty is proposed. In this algorithm, the trail step ischaracterized by computation of its normal component being separated from computation of itstangential component, i.e., only the tangential component of the trail step is constrained by trustradius while the normal component and trail step itself have no constraints. The other maincharacteristic of the algorithm is the decision of trust region radius. Here, the decision of trustregion radius uses the information of the gradient of objective function and reduced Hessian.However, Maratos effect will occur when we use the nondifferentiable exact penalty function as themerit function. In order to obtain the superlinear convergence of the algorithm, we use the twiceorder correction technique. Because of the speciality of the adaptive trust region method, we usetwice order correction when p = 0 (the definition is as in Section 2) and this is different from thetraditional trust region methods for equality constrained optimization. So the computation of thealgorithm in this paper is reduced. What is more, we can prove that the algorithm is globally andsuperlinearly convergent.展开更多
文摘A class of trust region methods for solving linear inequality constrained problems is proposed in this paper. It is shown that the algorithm is of global convergence.The algorithm uses a version of the two-sided projection and the strategy of the unconstrained trust region methods. It keeps the good convergence properties of the unconstrained case and has the merits of the projection method. In some sense, our algorithm can be regarded as an extension and improvement of the projected type algorithm.
文摘In this paper, we propose and analyze a non-monotone trust region method with non-monotone line search strategy for unconstrained optimization problems. Unlike the traditional non-monotone trust region method, our algorithm utilizes non-monotone Wolfe line search to get the next point if a trial step is not adopted. Thus, it can reduce the number of solving sub-problems. Theoretical analysis shows that the new proposed method has a global convergence under some mild conditions.
文摘This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the global convergence of this algorithm is proved without assuming the linear independence of the gradient of active constraints. A numerical example is also presented.
基金Research partly supported by Chinese NSF grants 19731001 and 19801033. The second author gratefully acknowledges the support of Natoinal 973 Information Fechnology and High-Performance Software Program of China with grant No. G1998030401 and K. C. Wong E
文摘Trust region (TR) algorithms are a class of recently developed algorithms for nonlinear optimization. A new family of TR algorithms for unconstrained optimization, which is the extension of the usual TR method, is presented in this paper. When the objective function is bounded below and continuously, differentiable, and the norm of the Hesse approximations increases at most linearly with the iteration number, we prove the global convergence of the algorithms. Limited numerical results are reported, which indicate that our new TR algorithm is competitive.
基金supported by National Natural Science Foundation of China(Grant Nos.60903088 and 11101115)the Natural Science Foundation of Hebei Province(Grant No.A2010000188)Doctoral Foundation of Hebei University(Grant No.2008136)
文摘In this paper,we propose an improved trust region method for solving unconstrained optimization problems.Different with traditional trust region methods,our algorithm does not resolve the subproblem within the trust region centered at the current iteration point,but within an improved one centered at some point located in the direction of the negative gradient,while the current iteration point is on the boundary set.We prove the global convergence properties of the new improved trust region algorithm and give the computational results which demonstrate the effectiveness of our algorithm.
文摘A class of nonmonotone trust region algorithms is presented for unconstrained optimizations. Under suitable conditions, the global and Q quadratic convergences of the algorithm are proved. Several rules of choosing trial steps and trust region radii are also discussed.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 11171159),the Specialized Research Fund of Doctoral Program of Higher Education of China (Grant No. 20103207110002), the Fund for Innovative Program of Jiangsu Province (Grant No. CXLX12_0387), CNPq-Brazil (Grant No. 301748/ 2011-0), and the Research Fund of Pontifical Catholic University of Parana, Brazil.
文摘We propose a nonmonotone adaptive trust region method based on simple conic model for unconstrained optimization. Unlike traditional trust region methods, the subproblem in our method is a simple conic model, where the Hessian of the objective function is approximated by a scalar matrix. The trust region radius is adjusted with a new self-adaptive adjustment strategy which makes use of the information of the previous iteration and current iteration. The new method needs less memory and computational efforts. The global convergence and Q-superlinear convergence of the algorithm are established under the mild conditions. Numerical results on a series of standard test problems are reported to show that the new method is effective and attractive for large scale unconstrained optimization problems.
基金Supported by the National Natural Science Foundation of P.R.China(1 9971 0 0 2 ) and the Subject ofBeijing Educational Committ
文摘A new trust region algorithm for solving convex LC 1 optimization problem is presented.It is proved that the algorithm is globally convergent and the rate of convergence is superlinear under some reasonable assumptions.
文摘Based on the nonmonotone line search technique proposed by Gu and Mo (Appl. Math. Comput. 55, (2008) pp. 2158-2172), a new nonmonotone trust region algorithm is proposed for solving unconstrained optimization problems in this paper. The new algorithm is developed by resetting the ratio ρk for evaluating the trial step dk whenever acceptable. The global and superlinear convergence of the algorithm are proved under suitable conditions. Numerical results show that the new algorithm is effective for solving unconstrained optimization problems.
基金Supported by the NNSF(10231060 and 10501024)of Chinathe Specialized Research Fund(20040319003)of Doctoral Program of Higher Education of China+1 种基金the Natural Science Grant(BK2006214)of Jiangsu Province of Chinathe Foundation(2004NXY20)of Nanjing Xiaozhuang College.
文摘In this paper, we combine the nonmonotone and adaptive techniques with trust region method for unconstrained minimization problems. We set a new ratio of the actual descent and predicted descent. Then, instead of the monotone sequence, the nonmonotone sequence of function values are employed. With the adaptive technique, the radius of trust region △k can be adjusted automatically to improve the efficiency of trust region methods. By means of the Bunch-Parlett factorization, we construct a method with indefinite dogleg path for solving the trust region subproblem which can handle the indefinite approximate Hessian Bk. The convergence properties of the algorithm are established. Finally, detailed numerical results are reported to show that our algorithm is efficient.
基金Supported by the National Natural Science Foundation of China(11661009)the Guangxi Science Fund for Distinguished Young Scholars(2015GXNSFGA139001)+1 种基金the Guangxi Natural Science Key Fund(2017GXNSFDA198046)the Basic Ability Promotion Project of Guangxi Young and Middle-Aged Teachers(2017KY0019)
文摘It is well known that trust region methods are very effective for optimization problems. In this article, a new adaptive trust region method is presented for solving uncon- strained optimization problems. The proposed method combines a modified secant equation with the BFGS updated formula and an adaptive trust region radius, where the new trust region radius makes use of not only the function information but also the gradient information. Under suitable conditions, global convergence is proved, and we demonstrate the local superlinear convergence of the proposed method. The numerical results indicate that the proposed method is very efficient.
文摘The trust region method plays an important role in solving optimization problems. In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems. Actually, we combine a popular nonmonotone technique with an adaptive trust region algorithm. The new ratio to adjusting the next trust region radius is different from the ratio in the traditional trust region methods. Under some appropriate conditions, we show that the new algorithm has good global convergence and superlinear convergence.
文摘In this note, the following unconstrained nonsmooth optimization problem is considered where f(x):R^n→R is only a locally Lipschitzian function. Many papers appear on the convergence properties of the trust region algorithm to solve several different particular nonsmooth problems. Dennis, Li and Tapia proposed a general trust region model by using regular functions. They proved the global convergence of the general trust region model under some mild conditions which are shown to be satisfied by many trust region algorithms including smooth one. Qi and Sun provided another trust region model
基金The authors would like to thank Prof Y.-X. Yuan for providing the source programsfor ref. [16]. Zhang Xiangsun was supported by the National Natural Science Foundation of China (Grant No. 39830070) Hong Kong Baptist University Zhang Juliang was su
文摘In this paper, a new trust region subproblem is proposed. The trust radius in the new subproblem adjusts itself adaptively. As a result, an adaptive trust region method is constructed based on the new trust region subproblem. The local and global convergence results of the adaptive trust region method are proved.Numerical results indicate that the new method is very efficient.
基金Project supported by the National Natural Science Foundation of China and Postdoctoral Foundation of China.
文摘A trust region algorithm for equality constrained optimization is proposed, which is a nonmonotone one in a certain sense. The augmented Lagrangian function is used as a merit function. Under certain conditions, the global convergence theorems of the algorithm are proved.
基金supported by National Natural Science Foundation of China (Grant Nos. 11571178, 11401308, 11371197 and 11471145)the National Science Foundation of USA (Grant No. 1522654)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In this paper, a new trust region method with simple model for solving large-scale unconstrained nonlinear optimization is proposed. By employing the generalized weak quasi-Newton equations, we derive several schemes to construct variants of scalar matrices as the Hessian approximation used in the trust region subproblem. Under some reasonable conditions, global convergence of the proposed algorithm is established in the trust region framework. The numerical experiments on solving the test problems with dimensions from 50 to 20,000 in the CUTEr library are reported to show efficiency of the algorithm.
基金The authors are supported by the Natronal Natural Science Foundation of China
文摘Presents an inexact trust region algorithm for solving constrained nonsmooth optimization problems. Global convergence of the algorithm; Assumptions on the algorithm; Relation between critical points and stationary points.
基金This research is partly supported by the Hunan Provincial Natural Science Foundtion of China and Hunan Provincial Education Foundation of China 02B021
文摘This paper presents a trust region algorithm with null space technique fornonlinear equality constrained optimization. Considering in the null space methods that,the convergent rate of range space step is faster than the null space step for the most cases,the proposed algorithm computes null steps more often than range space step. Moreover,the new algorithm is based on the reduced Hessian SQP method. Global convergence ofthe proposed algorithm is proved. The effectiveness of the method is demonstrated bysome numerical examples.
基金This research is supported in part by the National Natural Science Foundation of China(Grant No. 39830070,10171055)and China Postdoctoral Science Foundation
文摘In this paper, a trust region method for equality constrained optimizationbased on nondifferentiable exact penalty is proposed. In this algorithm, the trail step ischaracterized by computation of its normal component being separated from computation of itstangential component, i.e., only the tangential component of the trail step is constrained by trustradius while the normal component and trail step itself have no constraints. The other maincharacteristic of the algorithm is the decision of trust region radius. Here, the decision of trustregion radius uses the information of the gradient of objective function and reduced Hessian.However, Maratos effect will occur when we use the nondifferentiable exact penalty function as themerit function. In order to obtain the superlinear convergence of the algorithm, we use the twiceorder correction technique. Because of the speciality of the adaptive trust region method, we usetwice order correction when p = 0 (the definition is as in Section 2) and this is different from thetraditional trust region methods for equality constrained optimization. So the computation of thealgorithm in this paper is reduced. What is more, we can prove that the algorithm is globally andsuperlinearly convergent.