期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic Trust Model Based on Service Recommendation in Big Data 被引量:2
1
作者 Gang Wang Mengjuan Liu 《Computers, Materials & Continua》 SCIE EI 2019年第3期845-857,共13页
In big data of business service or transaction,it is impossible to provide entire information to both of services from cyber system,so some service providers made use of maliciously services to get more interests.Trus... In big data of business service or transaction,it is impossible to provide entire information to both of services from cyber system,so some service providers made use of maliciously services to get more interests.Trust management is an effective solution to deal with these malicious actions.This paper gave a trust computing model based on service-recommendation in big data.This model takes into account difference of recommendation trust between familiar node and stranger node.Thus,to ensure accuracy of recommending trust computing,paper proposed a fine-granularity similarity computing method based on the similarity of service concept domain ontology.This model is more accurate in computing trust value of cyber service nodes and prevents better cheating and attacking of malicious service nodes.Experiment results illustrated our model is effective. 展开更多
关键词 Trust model recommendation trust content similarity ONTOLOGY big data.
下载PDF
Deep Learning Enabled Social Media Recommendation Based on User Comments
2
作者 K.Saraswathi V.Mohanraj +1 位作者 Y.Suresh J.Senthilkumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1691-1702,共12页
Nowadays,review systems have been developed with social media Recommendation systems(RS).Although research on RS social media is increas-ing year by year,the comprehensive literature review and classification of this R... Nowadays,review systems have been developed with social media Recommendation systems(RS).Although research on RS social media is increas-ing year by year,the comprehensive literature review and classification of this RS research is limited and needs to be improved.The previous method did notfind any user reviews within a time,so it gets poor accuracy and doesn’tfilter the irre-levant comments efficiently.The Recursive Neural Network-based Trust Recom-mender System(RNN-TRS)is proposed to overcome this method’s problem.So it is efficient to analyse the trust comment and remove the irrelevant sentence appropriately.Thefirst step is to collect the data based on the transactional reviews of social media.The second step is pre-processing using Imbalanced Col-laborative Filtering(ICF)to remove the null values from the dataset.Extract the features from the pre-processing step using the Maximum Support Grade Scale(MSGS)to extract the maximum number of scaling features in the dataset and grade the weights(length,count,etc.).In the Extracting features for Training and testing method before that in the feature weights evaluating the softmax acti-vation function for calculating the average weights of the features.Finally,In the classification method,the Recursive Neural Network-based Trust Recommender System(RNN-TRS)for User reviews based on the Positive and negative scores is analysed by the system.The simulation results improve the predicting accuracy and reduce time complexity better than previous methods. 展开更多
关键词 recommendation systems(RS) social media recursive neural network-based trust recommender system(RNN-TRS) user reviews
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部