A loose coupling method is used to solve the electromagnetic tube bulging. ANSYS/ EMAG is used to model the time varying electromagnetic field with the discharge current used as excitation, in order to obtain the radi...A loose coupling method is used to solve the electromagnetic tube bulging. ANSYS/ EMAG is used to model the time varying electromagnetic field with the discharge current used as excitation, in order to obtain the radial and axial magnetic pressure acting on the tube, the magnetic pressure is then used as boundary conditions to model the high velocity deformation of tube with DYNAFORM, The radial magnetic pressure on the tube decreases from the center to the tube end, axial magnetic pressure is greater near the location equal to the coil height and slight in the other region. The radial displacement of deformed workpicces is distributed uniformly near the tube center and decreases from the center to the end; Deformation from the location equal to coil height to the tube end is little. This distribution is consistent with the distribution of radial pressure; Effect of the axial magnetic pressure on deformation can be ignored, The calculated results show well agreements with the experimental results.展开更多
Ring hoop tension test and tube bulging test were carried out at elevated temperatures up to 480 ℃to evaluate the formability of AZ31B extruded tube for internal high pressure forming (IHPF) process. The total elon...Ring hoop tension test and tube bulging test were carried out at elevated temperatures up to 480 ℃to evaluate the formability of AZ31B extruded tube for internal high pressure forming (IHPF) process. The total elongation along hoop direction and the maximum expansion ratio (MER) of the tube were obtained. The fracture surface after bursting was also analyzed. The results show that the total elongation along hoop direction and the MER value have a similar changing tendency as the testing temperature increases, which is quite different from the total elongation along axial direction. Both the total elongation along hoop direction and the MER value increase to a peak value at about 160 ℃. After that, they begin to decrease quickly until a certain rebounding temperature is reached. From the rebounding temperature, they begin to increase rapidly again. Burnt structure appears on the fracture surface when tested at temperatures higher than 420 ℃. Therefore, the forming temperature of the tested tube should be lower than 420 ℃, even though bigger formability can be achieved at higher temperature.展开更多
文摘A loose coupling method is used to solve the electromagnetic tube bulging. ANSYS/ EMAG is used to model the time varying electromagnetic field with the discharge current used as excitation, in order to obtain the radial and axial magnetic pressure acting on the tube, the magnetic pressure is then used as boundary conditions to model the high velocity deformation of tube with DYNAFORM, The radial magnetic pressure on the tube decreases from the center to the tube end, axial magnetic pressure is greater near the location equal to the coil height and slight in the other region. The radial displacement of deformed workpicces is distributed uniformly near the tube center and decreases from the center to the end; Deformation from the location equal to coil height to the tube end is little. This distribution is consistent with the distribution of radial pressure; Effect of the axial magnetic pressure on deformation can be ignored, The calculated results show well agreements with the experimental results.
基金Project(50805033)supported by the National Natural Science Foundation of ChinaProject(E200804)supported by the Natural Science Foundation of Heilongjiang Province of China
文摘Ring hoop tension test and tube bulging test were carried out at elevated temperatures up to 480 ℃to evaluate the formability of AZ31B extruded tube for internal high pressure forming (IHPF) process. The total elongation along hoop direction and the maximum expansion ratio (MER) of the tube were obtained. The fracture surface after bursting was also analyzed. The results show that the total elongation along hoop direction and the MER value have a similar changing tendency as the testing temperature increases, which is quite different from the total elongation along axial direction. Both the total elongation along hoop direction and the MER value increase to a peak value at about 160 ℃. After that, they begin to decrease quickly until a certain rebounding temperature is reached. From the rebounding temperature, they begin to increase rapidly again. Burnt structure appears on the fracture surface when tested at temperatures higher than 420 ℃. Therefore, the forming temperature of the tested tube should be lower than 420 ℃, even though bigger formability can be achieved at higher temperature.