Deposition of diamond thin films on tungsten wire substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hot filament chemical vapor deposition(CVD)with the tantalum wires being optimized arra...Deposition of diamond thin films on tungsten wire substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hot filament chemical vapor deposition(CVD)with the tantalum wires being optimized arranged is investigated.The self-supported diamond tubes are obtained by etching away the tungsten substrates.The quality of the diamond film before and after the removal of substrates is observed by scanning electron microscope(SEM)and Raman spectrum.The results show that the cylindrical diamond tubes with good quality and uniform thickness are obtained on tungsten wires by using bias enhanced hot filament CVD.The compressive stress in diamond film formed during the deposition is released after the substrate etches away by mixture of H2O2 and NH4 OH.There is no residual stress in diamond tube after substrate removal.展开更多
Pollen grains of Pinus thunbergii Parl. (Japanese black pine) were implanted with 30 keV nitrogen ion beams and the effects of nitrogen ion implantation on pollen tube growth in vitro and the organization of actin c...Pollen grains of Pinus thunbergii Parl. (Japanese black pine) were implanted with 30 keV nitrogen ion beams and the effects of nitrogen ion implantation on pollen tube growth in vitro and the organization of actin cytoskeleton in the pollen tube cell were investigated using a confocal laser scanning microscope after fluorescence labeling. Treatment with ion implantation significantly blocked pollen tube growth. Confocal microscopy showed that ion implantation disrupted actin filament cytoskeleton organization in the pollen tube. It was found that there was a distinct correlation between the inhibition of pollen tube growth and the disruption of actin cytoskeleton organization, indicating that an intact actin cytoskeleton is essential for continuous pollen tube elongation in Pinus thunbergii. Although the detailed mechanism for the ion-implantation-induced bioeffect still remains to be elucidated, the present study assumes that the cytoskeleton system in pollen grains may provide a key target in response to ion beam implantation and is involved in mediating certain subsequent cytological changes.展开更多
基金Selected from Proceedings of the 7th International Conference on Frontiers of Design and Manufacturing(ICFDM'2006)This project is supported by National Natural Science Foundation of China(No.50475026,No.50275095,No.50575135).
文摘Deposition of diamond thin films on tungsten wire substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hot filament chemical vapor deposition(CVD)with the tantalum wires being optimized arranged is investigated.The self-supported diamond tubes are obtained by etching away the tungsten substrates.The quality of the diamond film before and after the removal of substrates is observed by scanning electron microscope(SEM)and Raman spectrum.The results show that the cylindrical diamond tubes with good quality and uniform thickness are obtained on tungsten wires by using bias enhanced hot filament CVD.The compressive stress in diamond film formed during the deposition is released after the substrate etches away by mixture of H2O2 and NH4 OH.There is no residual stress in diamond tube after substrate removal.
基金National Science Foundation of Fujian Province of China(No.B0610031)Science and Technology Program of Put-Jan Municipality of China(No.2006N17)
文摘Pollen grains of Pinus thunbergii Parl. (Japanese black pine) were implanted with 30 keV nitrogen ion beams and the effects of nitrogen ion implantation on pollen tube growth in vitro and the organization of actin cytoskeleton in the pollen tube cell were investigated using a confocal laser scanning microscope after fluorescence labeling. Treatment with ion implantation significantly blocked pollen tube growth. Confocal microscopy showed that ion implantation disrupted actin filament cytoskeleton organization in the pollen tube. It was found that there was a distinct correlation between the inhibition of pollen tube growth and the disruption of actin cytoskeleton organization, indicating that an intact actin cytoskeleton is essential for continuous pollen tube elongation in Pinus thunbergii. Although the detailed mechanism for the ion-implantation-induced bioeffect still remains to be elucidated, the present study assumes that the cytoskeleton system in pollen grains may provide a key target in response to ion beam implantation and is involved in mediating certain subsequent cytological changes.