In semi-solid forming process, preparing the slurry with rosette or globular microstructure is very important. A new approach named the damper cooling tube method (DCT), to produce the semi-solid metal slurry, has b...In semi-solid forming process, preparing the slurry with rosette or globular microstructure is very important. A new approach named the damper cooling tube method (DCT), to produce the semi-solid metal slurry, has been introduced. To optimize the technical parameters in designing the apparatus, the finite volume method was adopted to simulate the flow process. The temperature effects on the rheological properties of the slurries were also considered. The effects of the technical parameters on the slurry properties were studied in detail.展开更多
A loose coupling method is used to solve the electromagnetic tube bulging. ANSYS/ EMAG is used to model the time varying electromagnetic field with the discharge current used as excitation, in order to obtain the radi...A loose coupling method is used to solve the electromagnetic tube bulging. ANSYS/ EMAG is used to model the time varying electromagnetic field with the discharge current used as excitation, in order to obtain the radial and axial magnetic pressure acting on the tube, the magnetic pressure is then used as boundary conditions to model the high velocity deformation of tube with DYNAFORM, The radial magnetic pressure on the tube decreases from the center to the tube end, axial magnetic pressure is greater near the location equal to the coil height and slight in the other region. The radial displacement of deformed workpicces is distributed uniformly near the tube center and decreases from the center to the end; Deformation from the location equal to coil height to the tube end is little. This distribution is consistent with the distribution of radial pressure; Effect of the axial magnetic pressure on deformation can be ignored, The calculated results show well agreements with the experimental results.展开更多
We have been using the method of tube-arrest as a means of producing transient single cavitation bubble. In the present paper we seek to comprehend the mechanism of production and inquire into the structure of the ab ...We have been using the method of tube-arrest as a means of producing transient single cavitation bubble. In the present paper we seek to comprehend the mechanism of production and inquire into the structure of the ab initio pressure field in the arrested liquid column. The generated pressure wave is shown by combining the theoretical analysis with the experimental observation to be a slightly varied version of water hammer. With relatively clean liquid, the magnitude of the tension peak generating the TSB is likely to reach of several millions Pa. It is also shown that the so generated cavitation bubble originating from the gas-containing bulk liquid is in ‘violent’ motion.展开更多
Using commercial amorphous B powder (92% in purity) and Mg powder (99% in purity) as starting materials, 19-filament Fe/Cu clad MgB2 wires were fabricated by an in situ powder-in-tube method. Heat treatment was perfor...Using commercial amorphous B powder (92% in purity) and Mg powder (99% in purity) as starting materials, 19-filament Fe/Cu clad MgB2 wires were fabricated by an in situ powder-in-tube method. Heat treatment was performed at 700℃ for 1 h under an argon gas atmosphere. The influence of Mg/B ratio on the microstructure and superconducting properties of the wires was investigated. It was found that the major phases of MgB2 wires were MgB2 accompanied with relatively small amounts of MgO and Fe2B impurities. With 5% excess Mg addition, the onset TC slightly decreased. However, the transport JC at 4.2 K and 4 T reached 1.07×104 A·cm-2, increasing by a factor of 1.4 compared to the stoichiometric sample. Moreover, the Mg1.05B2 sample showed an improved field dependence of JC, suggesting that less voids and smaller grain size of the Mg1.05B2 core lead to better grain connectivity and stronger flux pinning.展开更多
In this paper, A method, consisted of perturbation method, Garlerkin method and finite-difference method, is designed to calculate fully developed flows in curved tubes of rectangular cross-section. It costs less comp...In this paper, A method, consisted of perturbation method, Garlerkin method and finite-difference method, is designed to calculate fully developed flows in curved tubes of rectangular cross-section. It costs less computation than that of direct solving N-S equations, and prevents from building high-order difference equations and extra dealing with the boundary conditions. Numerical results in the situation of small curvature and low Dean number is in accordance with former's numerical and experimental results in quality, and it shows the feasibility of this paper's method.展开更多
A numerical method capable is developed for handling steady laminar flow and heat trans-fer of a highly viscous power-law fluid whose density,viscosity,specific heat and thermalconductivity,vary with temperature.The g...A numerical method capable is developed for handling steady laminar flow and heat trans-fer of a highly viscous power-law fluid whose density,viscosity,specific heat and thermalconductivity,vary with temperature.The governing equations are found to be continuity,monmentumand energy expressions.Important effects such as varying viscosity,natural convection and viscousdissipation are incorporated in the theoretical model.These equations are being attracted by employing a decoupled finite element method.Galerkin’sprinciple is used to handle the momentum and continuity equations.Consistent(SU/PG)andnon-consistent(SU)streamline upwind methods are employed for the energy equation.Comparisonof calculated results and experimental data shows good agreement.Similar results are obtained withSU and SU/PG methods.Velocity and temperature profiles which provide insights into the processare also given.展开更多
Highly ordered nanowire/tube arrays of Ni0.5Zn0.5Fe2O4were fabricated by the sol-gel method in the pores of anodic alumina membrane (AAM). Whether nanowires or nanotubes were fabricated depends on immersion time. Th...Highly ordered nanowire/tube arrays of Ni0.5Zn0.5Fe2O4were fabricated by the sol-gel method in the pores of anodic alumina membrane (AAM). Whether nanowires or nanotubes were fabricated depends on immersion time. The immersion time was 15- 40 s for nanotubes and over 60 s for nanowires. The topography and crystalline structure of the nanowire arrays were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). It was found that the length and diameter of the Ni0.5Zn0.5Fe2O4 nanowires are related to the thickness of the AAM and the diameter of the pores. The results indicated that the Ni0.5Zn0.5Fe2O4 nanowires are uniform and parallel to each other.展开更多
In this paper, the boundary element method is applied to investigate the internal state of stress of autofretted tube with notch and the calculated results are important in the practical design.
Springback is one of important factors influencing the forming quality of numerical control (NC) bending of thin-walled tube. In this paper, a numerical-analytic method for springback angle prediction of the process...Springback is one of important factors influencing the forming quality of numerical control (NC) bending of thin-walled tube. In this paper, a numerical-analytic method for springback angle prediction of the process was put forward. The method is based on springback angle model derived using analytic method and simulation results from three-dimensional (3D) rigid-plastic finite element method (FEM). The method is validated through comparison with experimental results. The features of the method are as follows: (1) The method is high in efficiency because it combines advantages of rigid-plastic FEM and analytic method. (2) The method is satisfactory in accuracy, since the field variables used in the model is resulting from 3D rigid-plastic FEM solution, and the effects both of axial force and strain neutral axis shift have been included. (3) Research on multi-factor effects can be carried out using the method due to its advantage inheriting from rigid-plastic FEM. The method described here is also of general significance to other bending processes.展开更多
Kanamycin was used to screen To seeds of the variety Dongnong 46 transformed by means of pollen-tube method. The results showed that 400 mg·L^-1 kanamycin could inhibit growth of non-transgenic plants, and 2 posi...Kanamycin was used to screen To seeds of the variety Dongnong 46 transformed by means of pollen-tube method. The results showed that 400 mg·L^-1 kanamycin could inhibit growth of non-transgenic plants, and 2 positive plants were gotten combined with Gus dyeing and PCR detection. It is proved that this method is economic and effective in preliminary screening the transgenic plants.展开更多
In the shaping process of cross wedge rolling(CWR), metal undergoes a complex microstructural evolution, which affects the quality and mechanical properties of the product. Through secondary development of the DEFOR...In the shaping process of cross wedge rolling(CWR), metal undergoes a complex microstructural evolution, which affects the quality and mechanical properties of the product. Through secondary development of the DEFORM-3D software, we developed a rigid plastic finite element model for a CWR-processed rear axle tube, coupled with thermomechanical and microstructural aspects of workpieces. Using the developed model, we investigated the microstructural evolution of the CWR process. Also, the influence of numerous parameters, including the initial temperature of workpieces, the roll speed, the forming angle, and the spreading angle, on the grain size and the grain-size uniformity of the rolled workpieces was analyzed. The numerical simulation was verified through rolling and metallographic experiments. Good agreement was obtained between the calculated and experimental results, which demonstrated the reliability of the model constructed in this work.展开更多
The flotation process is a particle-hydrophobic surface-based separation technique. To improve the essential flotation steps of collision and attachment probabilities, and reduce the step of detachment probabilities b...The flotation process is a particle-hydrophobic surface-based separation technique. To improve the essential flotation steps of collision and attachment probabilities, and reduce the step of detachment probabilities between air bubbles and hydrophobic particles, a selectively designed cavitation venturi tube combined with a static mixer can be used to generate very high numbers of pico and nano bubbles in a flotation column. Fully embraced by those high numbers of tiny bubbles, hydrophobic particles readily attract the tiny bubbles to their surfaces. The results of column flotation of Pittsburgh No. 8 seam coal are obtained in a 5.08 cm ID and 162 cm height flotation column equipped with a static mixer and cavitation venturi tube, using kerosene as collector and MIBC as frother. Design of the experimental procedure is combined with a statistical two-stepwise analysis to determine the optimal operating conditions for maximum recovery at a specified grade. The effect of independent variables on the responses has been explained. Combustible material recovery of 85–90% at clean coal product of 10–11% ash is obtained from feed of 29.6% ash, with a much-reduced amount of frother and collector than that used in conventional column flotation. The column flotation process utilizing pico and nano bubbles can also be extended to the lower limit and upper limit of particle size ranges, minus 75 lm and 300–600 lm, respectively, for better recovery.展开更多
To obtain multiple monoenergetic neutron sources and realize the on-site calibration of radiation monitoring equipment for nuclear-involved places,the structural characteristics and neutron source features of D-T neut...To obtain multiple monoenergetic neutron sources and realize the on-site calibration of radiation monitoring equipment for nuclear-involved places,the structural characteristics and neutron source features of D-T neutron tube were analyzed;Monte Carlo method was adopted to simulate the effect of interaction between typical materials and different energy neutrons;multilayered shielding materials were combined and optimized to acquire the optimal scheme to shield the neutron sources from the neutron tube.On the base,a tapered alignment filtration construction was designed and Monte Carlo method was employed to simulate the effect of alignment construction.The result showed that the tapered alignment filtration construction can create monoenergetic neutrons including14.1 MeV,0.18 MeV and thermal neutrons and demonstrated good monochrome performance which provides multiple monoenergetic sources for the on-site calibration.展开更多
The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solv...The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solved, which restricts their applications. An optimal design method for the qusai-static folding and deploying of TWTF hinges with double slots is presented based on the response surface theory. Firstly, the full factorial method is employed to design of the experiments. Then, the finite element models of the TWTF hinges with double slots are constructed to simulate the qusai-static folding and deploying non-linear analysis. What's more, the mathematical model of the TWTF flexure hinge quasi-static folding and deploying properties are derived by the response surface method. Considering of small mass and high stability, the peak moment of quasi-static folding and deploying as well as the lightless are set as the objectives to get the optimal performances. The relative errors of the objectives between the optimal design results and the FE analysis results are less than 7%, which demonstrates the precision of the surrogate models. Lastly, the parameter study shows that both the slots length and the slots width both have significant effects to the peak moment of quasi-static folding and deploying of TWTF hinges with double slots. However, the maximum Mises stress of quasi-static folding is more sensitive to the slots length than the slots width. The proposed research can be applied to optimize other thin-walled flexure hinges under quasi-static folding and deploying, which is of great importance to design of flexure hinges with high stability and low stress.展开更多
Electromagnetic forming is one of the high-rate forming methods that can be extensively used to form and join axisymmetric metal sheet and tube. Tendency of homogeneous radial deformation during electromagnetic compre...Electromagnetic forming is one of the high-rate forming methods that can be extensively used to form and join axisymmetric metal sheet and tube. Tendency of homogeneous radial deformation during electromagnetic compression of aluminium tube was investigated through the design optimization method based on sequential coupling numerical simulation and experiments. The results show that the tendency depends on the length ratio of tube to coil (R), which has a critical value (Rc) corresponding to the relatively homogeneous radial deformation along axial direction. The tube length relative to Rc is insensitive to the discharge voltage. When R is greater than Rc, the deformed tube presents horn shape and the shorter coil makes for local deformation. If R is less than Rc, the deformed tube presents drum shape and the longer coil contributes to larger deformation at tube end. Rc increases with coli length and could approach to 1; inversely, it could approach to 0. These results indicate the design optimization method based on the sequential coupling numerical simulation is feasible, which can be used to realize the controllable and precise deformation of metal tube.展开更多
Ball spinning is applied to manufacturing thin-walled tube with high precision and high mechanical properties. On the basis of plastic mechanics, by simplifying ball spinning of thin-walled tube as plane strain proble...Ball spinning is applied to manufacturing thin-walled tube with high precision and high mechanical properties. On the basis of plastic mechanics, by simplifying ball spinning of thin-walled tube as plane strain problem, slab method is used for the purpose of calculating the contact deformation pressure. The spinning force components, the torsional moment, the deformation power and the deformation work are calculated further as well. The influence of the two important process parameters such as the feed ratio and the ball diameter on the spinning force components is analyzed in order to further control the spinning force components by regulating the two process variables during the ball spinning process. The stress and strain state in deformable zone as well as mechanics boundary conditions in ball spinning are obtained. The effect of the three spinning force components on the formability of the spun part is analyzed and validated through the ball spinning experiments. The theoretical and experimental results show that the radial spinning component plays a significant role in ball spinning of thin-walled tube, and the mechanics situation in backward ball spinning contributes to enhancing the plasticity of the metal material, but that in forward ball spinning contributes to advancing the axial flow of the metal material.展开更多
A new tube inversion method called guided tube inversion(GTI),which is based on traditional axial compression inversion,has been put forward.Computational and experimental studies of the guided external inversion of r...A new tube inversion method called guided tube inversion(GTI),which is based on traditional axial compression inversion,has been put forward.Computational and experimental studies of the guided external inversion of round tubes are presented.The main features of the deformation and the effects of key parameters on the forming process were discussed.Numerical and experimental results both indicated that the double-walled tubular parts made by the new method have a much higher quality than those made by traditional methods,as long as the proper parameters of the process were utilized.It was found that the die radius r,the inner diameter D of the guiding ring,the velocity V of the guiding system,and the surface friction between tube and guiding ring,play important roles in the inverting process.展开更多
Transmission Loss (TL) of a glass cylinder tube containing a fluid is studied experimentally. This test specimen represents a typical double layer panel including a fluid. The tests are carried out by using a modified...Transmission Loss (TL) of a glass cylinder tube containing a fluid is studied experimentally. This test specimen represents a typical double layer panel including a fluid. The tests are carried out by using a modified four-microphone standing-wave (impedance) tube for specimens with different lengths, 15 and 30 mm. Each cylinder tube is tested filled with one of the fluids at a time. The fluids are air, water, motor oil and a nanoparticle fluid (in absence of magnetic field). The effects of the cylinder length (thickness), impedance tube terminations, and the containing fluid are discussed. The increasing of the thickness led to an increase of the TL values and a decrease in resonance frequencies. Also, the addition of liquid middle layer led to considerable increase of the TL.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No.50374014).
文摘In semi-solid forming process, preparing the slurry with rosette or globular microstructure is very important. A new approach named the damper cooling tube method (DCT), to produce the semi-solid metal slurry, has been introduced. To optimize the technical parameters in designing the apparatus, the finite volume method was adopted to simulate the flow process. The temperature effects on the rheological properties of the slurries were also considered. The effects of the technical parameters on the slurry properties were studied in detail.
文摘A loose coupling method is used to solve the electromagnetic tube bulging. ANSYS/ EMAG is used to model the time varying electromagnetic field with the discharge current used as excitation, in order to obtain the radial and axial magnetic pressure acting on the tube, the magnetic pressure is then used as boundary conditions to model the high velocity deformation of tube with DYNAFORM, The radial magnetic pressure on the tube decreases from the center to the tube end, axial magnetic pressure is greater near the location equal to the coil height and slight in the other region. The radial displacement of deformed workpicces is distributed uniformly near the tube center and decreases from the center to the end; Deformation from the location equal to coil height to the tube end is little. This distribution is consistent with the distribution of radial pressure; Effect of the axial magnetic pressure on deformation can be ignored, The calculated results show well agreements with the experimental results.
基金supported by the National Natural Science Foundation of China (Grant No 10434070)
文摘We have been using the method of tube-arrest as a means of producing transient single cavitation bubble. In the present paper we seek to comprehend the mechanism of production and inquire into the structure of the ab initio pressure field in the arrested liquid column. The generated pressure wave is shown by combining the theoretical analysis with the experimental observation to be a slightly varied version of water hammer. With relatively clean liquid, the magnitude of the tension peak generating the TSB is likely to reach of several millions Pa. It is also shown that the so generated cavitation bubble originating from the gas-containing bulk liquid is in ‘violent’ motion.
基金the Beijing Municipal Science and Technology Commission (Grant No. Z07000300703)the State Key Development Program for Basic Research of China (Grant No. 2006CB601004)the National High Technology Research and Development Program for Advanced Materials of China (Grant No. 2006AA03Z203)
文摘Using commercial amorphous B powder (92% in purity) and Mg powder (99% in purity) as starting materials, 19-filament Fe/Cu clad MgB2 wires were fabricated by an in situ powder-in-tube method. Heat treatment was performed at 700℃ for 1 h under an argon gas atmosphere. The influence of Mg/B ratio on the microstructure and superconducting properties of the wires was investigated. It was found that the major phases of MgB2 wires were MgB2 accompanied with relatively small amounts of MgO and Fe2B impurities. With 5% excess Mg addition, the onset TC slightly decreased. However, the transport JC at 4.2 K and 4 T reached 1.07×104 A·cm-2, increasing by a factor of 1.4 compared to the stoichiometric sample. Moreover, the Mg1.05B2 sample showed an improved field dependence of JC, suggesting that less voids and smaller grain size of the Mg1.05B2 core lead to better grain connectivity and stronger flux pinning.
文摘In this paper, A method, consisted of perturbation method, Garlerkin method and finite-difference method, is designed to calculate fully developed flows in curved tubes of rectangular cross-section. It costs less computation than that of direct solving N-S equations, and prevents from building high-order difference equations and extra dealing with the boundary conditions. Numerical results in the situation of small curvature and low Dean number is in accordance with former's numerical and experimental results in quality, and it shows the feasibility of this paper's method.
文摘A numerical method capable is developed for handling steady laminar flow and heat trans-fer of a highly viscous power-law fluid whose density,viscosity,specific heat and thermalconductivity,vary with temperature.The governing equations are found to be continuity,monmentumand energy expressions.Important effects such as varying viscosity,natural convection and viscousdissipation are incorporated in the theoretical model.These equations are being attracted by employing a decoupled finite element method.Galerkin’sprinciple is used to handle the momentum and continuity equations.Consistent(SU/PG)andnon-consistent(SU)streamline upwind methods are employed for the energy equation.Comparisonof calculated results and experimental data shows good agreement.Similar results are obtained withSU and SU/PG methods.Velocity and temperature profiles which provide insights into the processare also given.
文摘Highly ordered nanowire/tube arrays of Ni0.5Zn0.5Fe2O4were fabricated by the sol-gel method in the pores of anodic alumina membrane (AAM). Whether nanowires or nanotubes were fabricated depends on immersion time. The immersion time was 15- 40 s for nanotubes and over 60 s for nanowires. The topography and crystalline structure of the nanowire arrays were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). It was found that the length and diameter of the Ni0.5Zn0.5Fe2O4 nanowires are related to the thickness of the AAM and the diameter of the pores. The results indicated that the Ni0.5Zn0.5Fe2O4 nanowires are uniform and parallel to each other.
文摘In this paper, the boundary element method is applied to investigate the internal state of stress of autofretted tube with notch and the calculated results are important in the practical design.
基金This work was supported by the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 50225518)the Teaching and Research Award Program for 0utstanding Young Teachers in Higher Education Institution of M0E, PRCthe Aeronautical Science Foundation of China (Grant No. 04H53057).
文摘Springback is one of important factors influencing the forming quality of numerical control (NC) bending of thin-walled tube. In this paper, a numerical-analytic method for springback angle prediction of the process was put forward. The method is based on springback angle model derived using analytic method and simulation results from three-dimensional (3D) rigid-plastic finite element method (FEM). The method is validated through comparison with experimental results. The features of the method are as follows: (1) The method is high in efficiency because it combines advantages of rigid-plastic FEM and analytic method. (2) The method is satisfactory in accuracy, since the field variables used in the model is resulting from 3D rigid-plastic FEM solution, and the effects both of axial force and strain neutral axis shift have been included. (3) Research on multi-factor effects can be carried out using the method due to its advantage inheriting from rigid-plastic FEM. The method described here is also of general significance to other bending processes.
文摘Kanamycin was used to screen To seeds of the variety Dongnong 46 transformed by means of pollen-tube method. The results showed that 400 mg·L^-1 kanamycin could inhibit growth of non-transgenic plants, and 2 positive plants were gotten combined with Gus dyeing and PCR detection. It is proved that this method is economic and effective in preliminary screening the transgenic plants.
基金support given by the National Natural Science Foundation of China (No.51505026)
文摘In the shaping process of cross wedge rolling(CWR), metal undergoes a complex microstructural evolution, which affects the quality and mechanical properties of the product. Through secondary development of the DEFORM-3D software, we developed a rigid plastic finite element model for a CWR-processed rear axle tube, coupled with thermomechanical and microstructural aspects of workpieces. Using the developed model, we investigated the microstructural evolution of the CWR process. Also, the influence of numerous parameters, including the initial temperature of workpieces, the roll speed, the forming angle, and the spreading angle, on the grain size and the grain-size uniformity of the rolled workpieces was analyzed. The numerical simulation was verified through rolling and metallographic experiments. Good agreement was obtained between the calculated and experimental results, which demonstrated the reliability of the model constructed in this work.
基金provided by West Virginia State Coal and Energy Research Bureau (CERB)the Department of Mining Engineering,West Virginia University
文摘The flotation process is a particle-hydrophobic surface-based separation technique. To improve the essential flotation steps of collision and attachment probabilities, and reduce the step of detachment probabilities between air bubbles and hydrophobic particles, a selectively designed cavitation venturi tube combined with a static mixer can be used to generate very high numbers of pico and nano bubbles in a flotation column. Fully embraced by those high numbers of tiny bubbles, hydrophobic particles readily attract the tiny bubbles to their surfaces. The results of column flotation of Pittsburgh No. 8 seam coal are obtained in a 5.08 cm ID and 162 cm height flotation column equipped with a static mixer and cavitation venturi tube, using kerosene as collector and MIBC as frother. Design of the experimental procedure is combined with a statistical two-stepwise analysis to determine the optimal operating conditions for maximum recovery at a specified grade. The effect of independent variables on the responses has been explained. Combustible material recovery of 85–90% at clean coal product of 10–11% ash is obtained from feed of 29.6% ash, with a much-reduced amount of frother and collector than that used in conventional column flotation. The column flotation process utilizing pico and nano bubbles can also be extended to the lower limit and upper limit of particle size ranges, minus 75 lm and 300–600 lm, respectively, for better recovery.
文摘To obtain multiple monoenergetic neutron sources and realize the on-site calibration of radiation monitoring equipment for nuclear-involved places,the structural characteristics and neutron source features of D-T neutron tube were analyzed;Monte Carlo method was adopted to simulate the effect of interaction between typical materials and different energy neutrons;multilayered shielding materials were combined and optimized to acquire the optimal scheme to shield the neutron sources from the neutron tube.On the base,a tapered alignment filtration construction was designed and Monte Carlo method was employed to simulate the effect of alignment construction.The result showed that the tapered alignment filtration construction can create monoenergetic neutrons including14.1 MeV,0.18 MeV and thermal neutrons and demonstrated good monochrome performance which provides multiple monoenergetic sources for the on-site calibration.
基金supported by National Natural Science Foundation ofChina(Grant No.50935002)
文摘The thin-walled tube flexure(TWTF) hinges have important potential application value in the deployment mechanisms of satellite and solar array, but the optimal design of the TWTF hinges haven't been completely solved, which restricts their applications. An optimal design method for the qusai-static folding and deploying of TWTF hinges with double slots is presented based on the response surface theory. Firstly, the full factorial method is employed to design of the experiments. Then, the finite element models of the TWTF hinges with double slots are constructed to simulate the qusai-static folding and deploying non-linear analysis. What's more, the mathematical model of the TWTF flexure hinge quasi-static folding and deploying properties are derived by the response surface method. Considering of small mass and high stability, the peak moment of quasi-static folding and deploying as well as the lightless are set as the objectives to get the optimal performances. The relative errors of the objectives between the optimal design results and the FE analysis results are less than 7%, which demonstrates the precision of the surrogate models. Lastly, the parameter study shows that both the slots length and the slots width both have significant effects to the peak moment of quasi-static folding and deploying of TWTF hinges with double slots. However, the maximum Mises stress of quasi-static folding is more sensitive to the slots length than the slots width. The proposed research can be applied to optimize other thin-walled flexure hinges under quasi-static folding and deploying, which is of great importance to design of flexure hinges with high stability and low stress.
基金Projects(50575052, 50805036) supported by the National Natural Science Foundation of China
文摘Electromagnetic forming is one of the high-rate forming methods that can be extensively used to form and join axisymmetric metal sheet and tube. Tendency of homogeneous radial deformation during electromagnetic compression of aluminium tube was investigated through the design optimization method based on sequential coupling numerical simulation and experiments. The results show that the tendency depends on the length ratio of tube to coil (R), which has a critical value (Rc) corresponding to the relatively homogeneous radial deformation along axial direction. The tube length relative to Rc is insensitive to the discharge voltage. When R is greater than Rc, the deformed tube presents horn shape and the shorter coil makes for local deformation. If R is less than Rc, the deformed tube presents drum shape and the longer coil contributes to larger deformation at tube end. Rc increases with coli length and could approach to 1; inversely, it could approach to 0. These results indicate the design optimization method based on the sequential coupling numerical simulation is feasible, which can be used to realize the controllable and precise deformation of metal tube.
基金supported by Overseas Returnee Foundation of Heilongjiang Province, China (lc01c13).
文摘Ball spinning is applied to manufacturing thin-walled tube with high precision and high mechanical properties. On the basis of plastic mechanics, by simplifying ball spinning of thin-walled tube as plane strain problem, slab method is used for the purpose of calculating the contact deformation pressure. The spinning force components, the torsional moment, the deformation power and the deformation work are calculated further as well. The influence of the two important process parameters such as the feed ratio and the ball diameter on the spinning force components is analyzed in order to further control the spinning force components by regulating the two process variables during the ball spinning process. The stress and strain state in deformable zone as well as mechanics boundary conditions in ball spinning are obtained. The effect of the three spinning force components on the formability of the spun part is analyzed and validated through the ball spinning experiments. The theoretical and experimental results show that the radial spinning component plays a significant role in ball spinning of thin-walled tube, and the mechanics situation in backward ball spinning contributes to enhancing the plasticity of the metal material, but that in forward ball spinning contributes to advancing the axial flow of the metal material.
文摘A new tube inversion method called guided tube inversion(GTI),which is based on traditional axial compression inversion,has been put forward.Computational and experimental studies of the guided external inversion of round tubes are presented.The main features of the deformation and the effects of key parameters on the forming process were discussed.Numerical and experimental results both indicated that the double-walled tubular parts made by the new method have a much higher quality than those made by traditional methods,as long as the proper parameters of the process were utilized.It was found that the die radius r,the inner diameter D of the guiding ring,the velocity V of the guiding system,and the surface friction between tube and guiding ring,play important roles in the inverting process.
文摘Transmission Loss (TL) of a glass cylinder tube containing a fluid is studied experimentally. This test specimen represents a typical double layer panel including a fluid. The tests are carried out by using a modified four-microphone standing-wave (impedance) tube for specimens with different lengths, 15 and 30 mm. Each cylinder tube is tested filled with one of the fluids at a time. The fluids are air, water, motor oil and a nanoparticle fluid (in absence of magnetic field). The effects of the cylinder length (thickness), impedance tube terminations, and the containing fluid are discussed. The increasing of the thickness led to an increase of the TL values and a decrease in resonance frequencies. Also, the addition of liquid middle layer led to considerable increase of the TL.