The hydrogen-induced cracking (HIC) behavior of X80 pipeline steel was studied by means of electrochemical charging, hydrogen permeation tests, tension test, and scanning electron microscopy (SEM). The experimenta...The hydrogen-induced cracking (HIC) behavior of X80 pipeline steel was studied by means of electrochemical charging, hydrogen permeation tests, tension test, and scanning electron microscopy (SEM). The experimental results indicate that the increase of charging time and charging current density or the decrease of the solution pH value leads to an increase of the hydrogen content in X80 steel, which plays a key role in the initiation and propagation of HIC. It is found that the majority of macro-inclusions within the as-used X80 steel do not constitute a direct threat to HIC except aluminum oxides, which directly or indirectly lead to HIC. The hydrogen trap density at room temperature is estimated to be pretty high, and this is an essential reason why the steel is sensitive to HIC. After hydrogen charging, the elongation loss rate and area reduction of X80 steel decline obviously, taking a noticeable sign of hydrogen-induced plasticity damages. It is demonstrated that the losses of these plastic parameters have a linear relation to the fracture size due to hydrogen.展开更多
Hydrogen could be enriched on grain boundaries by stress induction and other traps.The enriched hydrogen facilitated emission and movement of dislocations and lowered plastic work.Consequently,fracture occurred easily...Hydrogen could be enriched on grain boundaries by stress induction and other traps.The enriched hydrogen facilitated emission and movement of dislocations and lowered plastic work.Consequently,fracture occurred easily along grain boundary.A normalized threshold value of hydrogen-induced cracking (HIC) along grain boundary is given as (KIH/KIC)2=1-0.162×10-3 βHCc(H)GH/(2γs-γb-0.16×103∑β CiGi),where βH and βi are the enrichment factors of hydrogen and other elements on grain boundaries,respectively;Cc(H) is hydrogen concentration induced by stress;C,is the average concentration of an element in the steel;GH and Gi are factors of fracture work along grain boundary with hydrogen and other elements,and γs and γb are surface free energy and grain boundary energy of Fe.For tubular steel,the calculated KH/KIC is 0.23 while the determined value is 0.26.The theoretical threshold value is well consistent with the experimental one.展开更多
For 308L and 347L weld metals of austenitc stainless steels (ASS), hydrogen induced cracking (HIC) occurred during dynamically charging under constant load. The threshold stress intensity for HIC, Km, decreased linear...For 308L and 347L weld metals of austenitc stainless steels (ASS), hydrogen induced cracking (HIC) occurred during dynamically charging under constant load. The threshold stress intensity for HIC, Km, decreased linearly with the logarithm of the concentration of diffusible hydrogen C0 in the weld metals and the rolled plate of type 304L ASS, i.e., KIH=85.2-10.71nC0 (308L), KIH=76.1-9.31n C0(347L), and KIH=91.7-10.11nC0(304L). The fracture mode for HIC in the three type of ASS changed from ductile to brittle with the decrease in the applied stress intensity KI or/and the increase in C0. The boundary line between ductile and brittle fracture surfaces was KI-54+25exp(-C0/153)=0.展开更多
基金supported by the National Natural Science Foundation of China (No.50401016)
文摘The hydrogen-induced cracking (HIC) behavior of X80 pipeline steel was studied by means of electrochemical charging, hydrogen permeation tests, tension test, and scanning electron microscopy (SEM). The experimental results indicate that the increase of charging time and charging current density or the decrease of the solution pH value leads to an increase of the hydrogen content in X80 steel, which plays a key role in the initiation and propagation of HIC. It is found that the majority of macro-inclusions within the as-used X80 steel do not constitute a direct threat to HIC except aluminum oxides, which directly or indirectly lead to HIC. The hydrogen trap density at room temperature is estimated to be pretty high, and this is an essential reason why the steel is sensitive to HIC. After hydrogen charging, the elongation loss rate and area reduction of X80 steel decline obviously, taking a noticeable sign of hydrogen-induced plasticity damages. It is demonstrated that the losses of these plastic parameters have a linear relation to the fracture size due to hydrogen.
基金Project supported by the National Natural Science Foundation of China and Shanghai Baoshan Iron and Steel Co.
文摘Hydrogen could be enriched on grain boundaries by stress induction and other traps.The enriched hydrogen facilitated emission and movement of dislocations and lowered plastic work.Consequently,fracture occurred easily along grain boundary.A normalized threshold value of hydrogen-induced cracking (HIC) along grain boundary is given as (KIH/KIC)2=1-0.162×10-3 βHCc(H)GH/(2γs-γb-0.16×103∑β CiGi),where βH and βi are the enrichment factors of hydrogen and other elements on grain boundaries,respectively;Cc(H) is hydrogen concentration induced by stress;C,is the average concentration of an element in the steel;GH and Gi are factors of fracture work along grain boundary with hydrogen and other elements,and γs and γb are surface free energy and grain boundary energy of Fe.For tubular steel,the calculated KH/KIC is 0.23 while the determined value is 0.26.The theoretical threshold value is well consistent with the experimental one.
基金This project was supported by the Special Fund for the MajorState Basic Research projects(No. G19990650).
文摘For 308L and 347L weld metals of austenitc stainless steels (ASS), hydrogen induced cracking (HIC) occurred during dynamically charging under constant load. The threshold stress intensity for HIC, Km, decreased linearly with the logarithm of the concentration of diffusible hydrogen C0 in the weld metals and the rolled plate of type 304L ASS, i.e., KIH=85.2-10.71nC0 (308L), KIH=76.1-9.31n C0(347L), and KIH=91.7-10.11nC0(304L). The fracture mode for HIC in the three type of ASS changed from ductile to brittle with the decrease in the applied stress intensity KI or/and the increase in C0. The boundary line between ductile and brittle fracture surfaces was KI-54+25exp(-C0/153)=0.