Agrobacterium tumefaciens mediated plant transformation is a versatile tool for plant genetic engineering following its discovery nearly half a century ago.Numerous modifications were made in its application to increa...Agrobacterium tumefaciens mediated plant transformation is a versatile tool for plant genetic engineering following its discovery nearly half a century ago.Numerous modifications were made in its application to increase efficiency,especially in the recalcitrant major cereals plants.Recent breakthroughs in transformation efficiency continue its role as a mainstream technique in CRISPR/Cas-based genome editing and gene stacking.These modifications led to higher transformation frequency and lower but more stable transgene copies with the capability to revolutionize modern agriculture.In this review,we provide a brief overview of the history of Agrobacterium-mediated plant transformation and focus on the most recent progress to improve the system in both the Agrobacterium and the host recipient.A promising future for transformation in biotechnology and agriculture is predicted.展开更多
Virus-induced gene silencing(VIGS)and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR/Cas)systems are effective technologies for rapid and accurate gene function verification...Virus-induced gene silencing(VIGS)and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR/Cas)systems are effective technologies for rapid and accurate gene function verification in modern plant biotechnology.However,the investigation of gene silencing and editing in radish remains limited.In this study,a bleaching phenotype was generated through the knockdown of RsPDS using tobacco rattle virus(TRV)-and turnip yellow mosaic virus(TYMV)-mediated gene silencing vectors.The TYMV-mediated gene silencing efficiency was higher than the TRV-based VIGS system in radish.The expression level of RsPDS was significantly inhibited using VIGS in'NAU-067'radish leaves.The rootless seedlings of‘NAU-067'were infected with Agrobacterium rhizogenes using the 2300GN-Ubi-RsPDS-Cas9 vector with two target sequences.Nine adventitious roots were blue with GUs staining,and four of these adventitious roots were edited at target sequence 1 of the RsPDS gene as indicated by Sanger sequencing.Furthermore,albino lines were generated with A.tumefaciens-mediated transformation of radish cotyledons.Five base substitutions and three base deletions occurred at target sequence 2 in Line 1,and three base insertions and three base substitutions occurred at target sequence 1 in Line 2.This study shows that VIGS and CRISPR/Cas9 techniques can be employed to precisely verify the biological functions of genes in radish,which will facilitate the genetic improvement of vital horticultural traits in radish breeding programs.展开更多
Hypocotyl segments from aseptic seedlings of two important cultivars of upland cotton ( Gossypium hirsutum L.) in Northwest China, 'Xinluzao_1', 'Jinmian_7', 'Jinmian_12' and 'Jihe_321...Hypocotyl segments from aseptic seedlings of two important cultivars of upland cotton ( Gossypium hirsutum L.) in Northwest China, 'Xinluzao_1', 'Jinmian_7', 'Jinmian_12' and 'Jihe_321' were transformed respectively by two efficient plant expression plasmids pBinMoBc and pBinoBc via Agrobacterium tumefaciens . In pBinMoBc, cry 1Ac3 gene, which encodes the Bt toxin, is under the control of chimeric OM promoter. In pBinoBc, it is under control of CaMV 35S promoter. After co_cultivation with Agrobacterium tumefimpfaciens LBA4404 (containing pBinMoBc or pBinoBc), kanamycin_resistant selection, somatic embryos were induced and regenerated plants were obtained. Then the regenerated plantlets were grafted to untransformed stocks in greenhouse to produce descendants. The integration of cry 1Ac3 gene and its expression in T 2 generation of transgenic cotton plants were confirmed by Southern hybridization and Western blotting. The analyses of insect bioassay indicated that the transgenic plants of both constructions have significant resistance to the larvae of cotton bollworm ( Heliothis armigera ) and that cry 1Ac3 gene driven by chimeric OM promoter could endue T 2 generation cotton with high pest_resistant ability, implicating that it has a profound application in genetic engineering to breed new pest_resistant cotton varieties.展开更多
Despite the importance of aloe in cosmetic and pharmaceutical industries, improvement of aloe (Aloe barbadensis Miller) by genetic engineering was seldom reported previously. In this study, regeneration and transfor...Despite the importance of aloe in cosmetic and pharmaceutical industries, improvement of aloe (Aloe barbadensis Miller) by genetic engineering was seldom reported previously. In this study, regeneration and transformation conditions, including explant selection and surface sterilization, use of different Agrobacterium strains, and co-culture processing, are optimized. The use of 20.0% sodium hypochloride (25 rain) for sterilization was less detrimental to the health of explant than 0.1% mercuric chloride (10 min). Regeneration frequency from stems was much higher than that from leaves or sheaths. Explants were infected by Agrobacterium (30 rain) in liquid co-cultural medium, and this was followed by three days co-culture on sterile filter papers with light for 10 h per day at 24℃. Histochemical data demonstrated that the transient expression of GUS gene in the stem explants of aloe infected with Agrobacterium strains EHAI05 and C58CI was 80.0% and 30.0%, respectively, suggesting the higher sensitivity of the explants to EHAI05 than to C58C1. Infected tissues were selected using G418 (10.0-25.0 mg/L) to generate transformants. Sixty-seven G418 resistant plantlets were generated from the infected explants. Southern blotting, PCR, and ELISA analyses indicated that the alien gene were successfully transferred into aloe and was expressed in the transgenic plants. This newly established transformation system could be used for the genetic improvement of aloe.展开更多
[Objective]The aim was to optimize genetic transformation system in tobacco K326 mediated by Agrobacterium.[Method]The leaf of tobacco aseptic seedling was taken as explants to study the optimization of Agrobacterium-...[Objective]The aim was to optimize genetic transformation system in tobacco K326 mediated by Agrobacterium.[Method]The leaf of tobacco aseptic seedling was taken as explants to study the optimization of Agrobacterium-mediated genetic transformation system.[Result] The highest transformation efficiency was obtained when the explants were pre-cultured in the medium of MS + 2 mg/L 6-BA + 0.2 mg/L IAA for 2 d,and then infected with Agrobacterium GV3101(OD600 =0.6) for 5 min.The PCR detection proved that npt II gene had been integrated into the regenerated tobacco plants.[Conclusion]A highly efficient genetic transformation system of tobacco leaf mediated by Agrobacterium was established.展开更多
[ Objective] The study is to generate pharmaceutical protein via plant transgenic technique. [Methed] Using the cotyledons with petiole as transformation receptor, the fusion gene of rapeseed oil-body gene and bFGF wa...[ Objective] The study is to generate pharmaceutical protein via plant transgenic technique. [Methed] Using the cotyledons with petiole as transformation receptor, the fusion gene of rapeseed oil-body gene and bFGF was introduced into the rapeseed ( Brassica campestris L. ) by Agrobacterium tumefaciens-mediated transformation; meanwhile regeneration conditions of rapeseed were also optimized, and the regenerated resistant plantlets were detected by PCR and Southern blot. [ Result] This fusion gene had been integrated into rapeseed genome successfully, and the optimized conditions of transformation and regeneration were as follows: explants pre-culture for 2 d, co-culture for 3 d, bacteria solution OD600 for 0.3 and infection time for 5 min. [ Conclusion] The results laid a solid foundation for extraction, isolation and purification of protein in transgenic plant seeds.展开更多
[Objective] The aim of this study was to carry out study on the optimization of Agrobacterium mediated genetic transformation system of tomato Meifen No.1.[Method] The cotyledon of tomato cultivar Meifen No.1 was used...[Objective] The aim of this study was to carry out study on the optimization of Agrobacterium mediated genetic transformation system of tomato Meifen No.1.[Method] The cotyledon of tomato cultivar Meifen No.1 was used as the explant,and the Agrobacterium mediation method was used to optimize its genetic transformation efficiency so as to establish the efficient Agrobacterium mediated genetic transformation system of tomato cotyledon.[Result] The highest transformation efficiency was obtained when the explants were cultivated for 2 d on MS + 2.0 mg/L 6-BA+ 0.5 mg/L IAA medium and then infected with Agrobacterium EHA105(OD = 0.4)for 5 min;it was proved by PCR analysis that the target nptII gene had been integrated into the genome of regenerated plants.[Conclusion] The result in this study had provided basis for the transfer of valuable genes into tomato Meifen No.1.展开更多
Protein fusion with the Escherichia coli alkaline phosphatase is used extensively for the analysis of the topology of membrane protein. Agrobacterium strain A6007 was mutagenized with E. coli strain mm294A plasmid pRK...Protein fusion with the Escherichia coli alkaline phosphatase is used extensively for the analysis of the topology of membrane protein. Agrobacterium strain A6007 was mutagenized with E. coli strain mm294A plasmid pRK609 having TnphoA to obtain mutants defective in virulence. Because alkaline phosphatase activity is only detected when the PhoA gene product from the transposon is secreted out of the protoplasm, the virulence mutants are located in genes that code for transmembrane or periplasmic proteins. Attempts were made to obtain the sequences adjacent to the TnphoA inserts through several different approaches including Inverse PCR, Cloning, and Tail PCR. Transposon-adjacent sequence was obtained from one membrane anchor subunit in Bradyrhizobium japonicum i.e. succinate dehydrogenase which has enhanced transformation efficiency.展开更多
Immature embryos of rice varieties "Xiushui11" and "Chunjiang 11" precultured for 4d were infected and transformed by Agrobacterium tumefaciens strain EHA101/pExT7 (containing the spider insecticid...Immature embryos of rice varieties "Xiushui11" and "Chunjiang 11" precultured for 4d were infected and transformed by Agrobacterium tumefaciens strain EHA101/pExT7 (containing the spider insecticidal gene). The resistant cant were transferred onto the differentiation medium and plants were regenerated. The transformation frequency reached 56%-72% measured as numbers of Geneticin (G418)-resistant calli produced and 36%-60% measured as numbers of transgenic plants regenerated, respectively. PCR and Southern blot analysis of transgenic plants confirmed that the T-DNA had been integrated into the rice genome. Insect bioassays using T1 transgenic plants indicated that the mortality of the leaffolder (Cnaphalocrasis medinalis) after 7d of leaf feeding reached 38%-61% and the corrected mortality of the striped stem borer (Chilo suppressalis) after 7d of leaf feeding reached 16%-75%. The insect bioassay results demonstrated that the transgenic plants expressing the spider insecticidal protein conferred enhanced resistance to these pests.展开更多
Wheat, one of the most important food crops, has been extensively studied with respects to plant regeneration and transformation employing the immature embryos as recipient tissues. However, the transformed tissues of...Wheat, one of the most important food crops, has been extensively studied with respects to plant regeneration and transformation employing the immature embryos as recipient tissues. However, the transformed tissues often become severely necrotic after co-cultivation with Agrobacterium, which is one of the major obstacles in gene delivery. In this study, wheat varieties CB037, Kenong 199, Xinchun 9, Lunxuan 987, and Shi 4185 showed desirable culture potential or high infection ability in Agrobacterium-mediated transformation. Similarly, optimal regeneration conditions were determined by testing their ability to inhibit the cell necrosis and cell death phenotype. Two auxins of 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-o-anisic acid (dicamba) were evaluated for highly significant effect on both callus and plantlet production, although they were genotype-dependent in wheat. Substitution of 2,4-D by dicamba enhanced the growth and regeneration ability of callus from the immature embryos of most genotypes tested. The callus growth state couldn’t be modified by adding antioxidants such as ascorbic acid, cysteine, and silver nitrate or organic additives such as thiamine HCl and asparagine to the media. On the contrary, the best tissue statement and plant regeneration was achieved by employing the media containing the simplest MS (Murashige and Skoog) components and dicamba without organic components and vitamins. Thereby, our results are thought to inhibit wheat cell necrosis effectively and suggested to be used for more wheat genotypes.展开更多
A case of Meropenem as a novel antibacterial agent to suppress and eliminate Agrobacterium tumefaciens in the Agrobacterium-mediated transformation of orchid protocorm-like bodies (PLBs) has been reported in this ar...A case of Meropenem as a novel antibacterial agent to suppress and eliminate Agrobacterium tumefaciens in the Agrobacterium-mediated transformation of orchid protocorm-like bodies (PLBs) has been reported in this article. The in vitro activities of meropenem and four comparator antibacterial agents against three Agrobacterium tumefaciens strains, LBA4404, EHA101, and GV3101, were assessed. In addition, the effect of meropenem on the growth of Dendrobium phalaenopsis PLBs was determined. Compared with other commonly used antibiotics (including ampicillin, carbenicillin, cefotaxime, and cefoperazone), meropenem showed the highest activity in suppressing all tested A. tumefaciens strains (minimum inhibitory concentration [MIC] 〈 0.5 mg L^-1, which is equal to minimum bactericidal concentration [MBC]). Meropenem, at all tested concentrations, except for 10 mg L^-1 concentration, had little negative effect on the growth of orchid tissues. The A. tumefaciens strain EHA101 in genetic transformation with vector plG121Hm in infected PLBs of the orchid was visually undetectable after a two-month subculture in 1/2 MS medium with 50 mg L^-1 meropenem and 25 mg L^-1 hygromacin. The expression and incorporation of the transgenes were confirmed by GUS histochemical assay and PCR analysis. Meropenem may be an alternative antibiotic for the effective suppression of A. tumefaciens in genetic transformation.展开更多
The production of transgenic sweetpotato (cv.Xushu 18) plants exhibiting enhanced salt tolerance using salt overly sensitive (SOS) genes was achieved through Agrobacterium tumefaciens-mediated transformation.A.tum...The production of transgenic sweetpotato (cv.Xushu 18) plants exhibiting enhanced salt tolerance using salt overly sensitive (SOS) genes was achieved through Agrobacterium tumefaciens-mediated transformation.A.tumefaciens strain EHA105 harbors a binary vector pCAMBIA3301 with SOS genes (SOS1,SOS2 and SOS3) and bar gene.Selection culture was conducted using 0.3 mg L^-1 phosphinothricin (PPT).A total of 40 plants were produced from the inoculated 170 cell aggregates via somatic embryogenesis.PCR analysis showed that 37 of the 40 regenerated plants were transgenic plants.The in vitro assay demonstrated that superoxide dismutase (SOD) and proline were significantly more accumulated and malonaldehyde (MDA) was significantly less accumulated in 21 transgenic plants than in control plants when they were exposed to 86 mmol L^-1 NaCl.Salt tolerance of these 21 plants was further evaluated with Hoagland solution containing 0,51,86,and 120 mmol L^-1 NaCl in the greenhouse.The results indicated that 6 of them had significantly better growth and rooting ability than the remaining 15 transgenic plants and control plants.Expression of SOS genes in the 6 salt-tolerant transgenic plants was demonstrated by RT-PCR analysis.This study provides an alternative approach for improving salt tolerance of sweetpotato.展开更多
Chinese cabbage,belonging to Brassica rapa species,is an important vegetable in Eastern Asia.It is well known that Chinese cabbage is quite recalcitrant to genetic transformation and the transgenic frequency is genera...Chinese cabbage,belonging to Brassica rapa species,is an important vegetable in Eastern Asia.It is well known that Chinese cabbage is quite recalcitrant to genetic transformation and the transgenic frequency is generally low.The lack of an efficient and stable genetic transformation system for Chinese cabbage has largely limited related gene functional studies.In this study,we firstly developed a regeneration system for Chinese cabbage by optimizing numerous factors,with 93.50%regeneration rate on average.Based on this,a simple and efficient Agrobacteriummediated genetic transformation methodwas established,without pre-culture procedure and concentration adjustment of hormone and AgNO_(3) in co-cultivation and selection media.Using this system,transformants could be obtained within 3.5–4.0 months.Average transformation frequency is up to 10.83%.The establishment of this simple and efficient genetic transformation method paved the way for further gene editing and functional studies in Chinese cabbage.展开更多
A method of Agrobacterium tumefaciens mediated transformation for perennial ryegrass was developed using the calli of ryegrass derived from mature enrbryos. The calli were inoculated with a disarmed A. tumefaciens str...A method of Agrobacterium tumefaciens mediated transformation for perennial ryegrass was developed using the calli of ryegrass derived from mature enrbryos. The calli were inoculated with a disarmed A. tumefaciens strain EHA105 harboring binary vector p2328. Vector p2328 contained transcription factor DREB1B and neomycin phosphotransferase (npt H) genes which were driven by promoters of rd29B and CaMV35S, respectively. The inoculated calli were selected on paromomycin- or kanamycin-containing media till the established plants being transferred to soil. Six tmnsgenic plants with DREB1B had been obtained from perennial ryegrass strain Tove. PCR and Southern-blotting showed that npt Ⅱ and DREBIB genes were integrated in perennial ryegrass genome. Stress treatment confirmed that transgenic plants with higher drought tolerance were obtained.展开更多
Salinity stress is one of the most serious factors limiting the distribution and productivity of crops and forest trees. The detrimental effects of salt on plants are a consequence of both a water deficit resulting in...Salinity stress is one of the most serious factors limiting the distribution and productivity of crops and forest trees. The detrimental effects of salt on plants are a consequence of both a water deficit resulting in osmotic stress and the effects of excess sodium ions on critical biochemical process. A novel approach to improve salt tolerance has been established by using the technology of plant genetic transformation and using loblolly pine (Pinus taeda L.) as a model plant. Mature zygotic embryos of loblolly pine were infected with Agrobacterium tumefaciens strain LBA 4404 harbouring the plasmid pBIGM which carrying the mannitol-1-phosphate dehydrogenase (Mt1D) and glucitol-6-phosphate dehydrogenase (GutD). Organogenic transgenic calli and transgenic regenerated plantlets were produced on selection medium containing 15mg/L kanamycin and confirmed by Southern blot analysis of genomic DNA. Salt tolerance assays demonstrated that the salt tolerance of transgenic calli and regenerated plantlets were increased. These results suggested that an efficient Agrobacterium tumefaciens-mediated transformation protocol for stable integration of foreign genes into loblolly pine has been developed and this could be useful for the future studies on engineering breeding of conifers.展开更多
Non-embryogenic calli (NEC) was inevitably and heavily produced when grape embryogenic calli (EC) was induced from explants or during the subculture of EC.A stable and highly efficient NEC transformation platform ...Non-embryogenic calli (NEC) was inevitably and heavily produced when grape embryogenic calli (EC) was induced from explants or during the subculture of EC.A stable and highly efficient NEC transformation platform is required to further sort out and verify key genes which determine/switch the identity of NEC and EC.In this research,a vector pA5 containing a chitinase signal sequence fused to gfp (green fluorescent protein) and an HDEL motive was used to target and immobilize into Agrobacterium strain EHA105 to establish a transformation platform for Vitis vinifera L.cv.Chardonnay NEC.It was determined that NEC 10 d after subculture was the best target tissue;30 min for inoculation followed by 3 d co-cultivation with the addition of 200 μmol L-1 acetosyringone (AS) was optimized as protocol.The use of bacterial densities as 1.0 at OD600 did not result in serious tissue hypersensitive reaction and it had higher efficiency.Kanamycin at 200 mg L-1 was picked for positive expression selection.The stable transformation of NEC was proved by reverse transcription-polymerase chain reaction techniques (RT-PCR) and fluorescent microscopy after three sub-cultures of the selected cell line.Highly efficient genetic transformation protocol of grape NEC was achieved and some of the optimized parameters were different from that reported for EC.This transformation platform could facilitate the verification of candidate somatic embryogenesis (SE) decisive genes,and the successfully transformed NEC with certain genes can also be used as bioreactors for the production of functional products,as NEC not only proliferates fast,but also keeps in a rather stable condition.展开更多
基金financial assistance provided by the High-End Foreign Expert Recruitment Program(G2022051003L)National Natural Science Foundation of China(32201878)+3 种基金Hainan Yazhou Bay Seed Lab(B21HJ0215)Agricultural Science and Technology Innovation Program of CAAS(CAASZDRW202002,CAAS-ZDRW202201)Hebei Natural Science Foundation(C2021205013)Long Mao is also a“Yellow River Delta Scholar”in Sino-Agro Experimental Station for Salt Tolerant Crops(SAESSTC),Dongying,Shandong,China.
文摘Agrobacterium tumefaciens mediated plant transformation is a versatile tool for plant genetic engineering following its discovery nearly half a century ago.Numerous modifications were made in its application to increase efficiency,especially in the recalcitrant major cereals plants.Recent breakthroughs in transformation efficiency continue its role as a mainstream technique in CRISPR/Cas-based genome editing and gene stacking.These modifications led to higher transformation frequency and lower but more stable transgene copies with the capability to revolutionize modern agriculture.In this review,we provide a brief overview of the history of Agrobacterium-mediated plant transformation and focus on the most recent progress to improve the system in both the Agrobacterium and the host recipient.A promising future for transformation in biotechnology and agriculture is predicted.
基金This work was supported by Jiangsu Seed Industry Revitalization Project,China[JBGS(2021)071]Fundamental Research Funds for the Central Universities,China(YDZX2023019)+3 种基金the National Natural Science Foundation of China(32172579)the earmarked fund for Jiangsu Agricultural Industry Technology System,China[JATS(2023)421]the Jiangsu Postgraduate Scientific Research Innovation Plan,China(KYCX21_0610-2021)the Project Founded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD).
文摘Virus-induced gene silencing(VIGS)and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR/Cas)systems are effective technologies for rapid and accurate gene function verification in modern plant biotechnology.However,the investigation of gene silencing and editing in radish remains limited.In this study,a bleaching phenotype was generated through the knockdown of RsPDS using tobacco rattle virus(TRV)-and turnip yellow mosaic virus(TYMV)-mediated gene silencing vectors.The TYMV-mediated gene silencing efficiency was higher than the TRV-based VIGS system in radish.The expression level of RsPDS was significantly inhibited using VIGS in'NAU-067'radish leaves.The rootless seedlings of‘NAU-067'were infected with Agrobacterium rhizogenes using the 2300GN-Ubi-RsPDS-Cas9 vector with two target sequences.Nine adventitious roots were blue with GUs staining,and four of these adventitious roots were edited at target sequence 1 of the RsPDS gene as indicated by Sanger sequencing.Furthermore,albino lines were generated with A.tumefaciens-mediated transformation of radish cotyledons.Five base substitutions and three base deletions occurred at target sequence 2 in Line 1,and three base insertions and three base substitutions occurred at target sequence 1 in Line 2.This study shows that VIGS and CRISPR/Cas9 techniques can be employed to precisely verify the biological functions of genes in radish,which will facilitate the genetic improvement of vital horticultural traits in radish breeding programs.
文摘Hypocotyl segments from aseptic seedlings of two important cultivars of upland cotton ( Gossypium hirsutum L.) in Northwest China, 'Xinluzao_1', 'Jinmian_7', 'Jinmian_12' and 'Jihe_321' were transformed respectively by two efficient plant expression plasmids pBinMoBc and pBinoBc via Agrobacterium tumefaciens . In pBinMoBc, cry 1Ac3 gene, which encodes the Bt toxin, is under the control of chimeric OM promoter. In pBinoBc, it is under control of CaMV 35S promoter. After co_cultivation with Agrobacterium tumefimpfaciens LBA4404 (containing pBinMoBc or pBinoBc), kanamycin_resistant selection, somatic embryos were induced and regenerated plants were obtained. Then the regenerated plantlets were grafted to untransformed stocks in greenhouse to produce descendants. The integration of cry 1Ac3 gene and its expression in T 2 generation of transgenic cotton plants were confirmed by Southern hybridization and Western blotting. The analyses of insect bioassay indicated that the transgenic plants of both constructions have significant resistance to the larvae of cotton bollworm ( Heliothis armigera ) and that cry 1Ac3 gene driven by chimeric OM promoter could endue T 2 generation cotton with high pest_resistant ability, implicating that it has a profound application in genetic engineering to breed new pest_resistant cotton varieties.
基金the grant from Beijing Education Committee (No. KZ200410011006).
文摘Despite the importance of aloe in cosmetic and pharmaceutical industries, improvement of aloe (Aloe barbadensis Miller) by genetic engineering was seldom reported previously. In this study, regeneration and transformation conditions, including explant selection and surface sterilization, use of different Agrobacterium strains, and co-culture processing, are optimized. The use of 20.0% sodium hypochloride (25 rain) for sterilization was less detrimental to the health of explant than 0.1% mercuric chloride (10 min). Regeneration frequency from stems was much higher than that from leaves or sheaths. Explants were infected by Agrobacterium (30 rain) in liquid co-cultural medium, and this was followed by three days co-culture on sterile filter papers with light for 10 h per day at 24℃. Histochemical data demonstrated that the transient expression of GUS gene in the stem explants of aloe infected with Agrobacterium strains EHAI05 and C58CI was 80.0% and 30.0%, respectively, suggesting the higher sensitivity of the explants to EHAI05 than to C58C1. Infected tissues were selected using G418 (10.0-25.0 mg/L) to generate transformants. Sixty-seven G418 resistant plantlets were generated from the infected explants. Southern blotting, PCR, and ELISA analyses indicated that the alien gene were successfully transferred into aloe and was expressed in the transgenic plants. This newly established transformation system could be used for the genetic improvement of aloe.
文摘[Objective]The aim was to optimize genetic transformation system in tobacco K326 mediated by Agrobacterium.[Method]The leaf of tobacco aseptic seedling was taken as explants to study the optimization of Agrobacterium-mediated genetic transformation system.[Result] The highest transformation efficiency was obtained when the explants were pre-cultured in the medium of MS + 2 mg/L 6-BA + 0.2 mg/L IAA for 2 d,and then infected with Agrobacterium GV3101(OD600 =0.6) for 5 min.The PCR detection proved that npt II gene had been integrated into the regenerated tobacco plants.[Conclusion]A highly efficient genetic transformation system of tobacco leaf mediated by Agrobacterium was established.
基金Supported by Bioreactor Important Special Item of 863-Program inthe "Eleventh Five-Year" Plan (No. 2007AA100503)Science and Technology Development Key Plan of Jilin Province( No.20070922)+1 种基金Cultivation Fund of Scientific and Technical Innovation Project Major Program of Higher Education Institutions ( No.70S018)Science and Technology Plan of Changchun City (No.06GG150)~~
文摘[ Objective] The study is to generate pharmaceutical protein via plant transgenic technique. [Methed] Using the cotyledons with petiole as transformation receptor, the fusion gene of rapeseed oil-body gene and bFGF was introduced into the rapeseed ( Brassica campestris L. ) by Agrobacterium tumefaciens-mediated transformation; meanwhile regeneration conditions of rapeseed were also optimized, and the regenerated resistant plantlets were detected by PCR and Southern blot. [ Result] This fusion gene had been integrated into rapeseed genome successfully, and the optimized conditions of transformation and regeneration were as follows: explants pre-culture for 2 d, co-culture for 3 d, bacteria solution OD600 for 0.3 and infection time for 5 min. [ Conclusion] The results laid a solid foundation for extraction, isolation and purification of protein in transgenic plant seeds.
基金Supported by Open Subjects in State Key Laboratory of Plant Physiology and Biochemistry(SKLPPBKF09011)~~
文摘[Objective] The aim of this study was to carry out study on the optimization of Agrobacterium mediated genetic transformation system of tomato Meifen No.1.[Method] The cotyledon of tomato cultivar Meifen No.1 was used as the explant,and the Agrobacterium mediation method was used to optimize its genetic transformation efficiency so as to establish the efficient Agrobacterium mediated genetic transformation system of tomato cotyledon.[Result] The highest transformation efficiency was obtained when the explants were cultivated for 2 d on MS + 2.0 mg/L 6-BA+ 0.5 mg/L IAA medium and then infected with Agrobacterium EHA105(OD = 0.4)for 5 min;it was proved by PCR analysis that the target nptII gene had been integrated into the genome of regenerated plants.[Conclusion] The result in this study had provided basis for the transfer of valuable genes into tomato Meifen No.1.
文摘Protein fusion with the Escherichia coli alkaline phosphatase is used extensively for the analysis of the topology of membrane protein. Agrobacterium strain A6007 was mutagenized with E. coli strain mm294A plasmid pRK609 having TnphoA to obtain mutants defective in virulence. Because alkaline phosphatase activity is only detected when the PhoA gene product from the transposon is secreted out of the protoplasm, the virulence mutants are located in genes that code for transmembrane or periplasmic proteins. Attempts were made to obtain the sequences adjacent to the TnphoA inserts through several different approaches including Inverse PCR, Cloning, and Tail PCR. Transposon-adjacent sequence was obtained from one membrane anchor subunit in Bradyrhizobium japonicum i.e. succinate dehydrogenase which has enhanced transformation efficiency.
文摘Immature embryos of rice varieties "Xiushui11" and "Chunjiang 11" precultured for 4d were infected and transformed by Agrobacterium tumefaciens strain EHA101/pExT7 (containing the spider insecticidal gene). The resistant cant were transferred onto the differentiation medium and plants were regenerated. The transformation frequency reached 56%-72% measured as numbers of Geneticin (G418)-resistant calli produced and 36%-60% measured as numbers of transgenic plants regenerated, respectively. PCR and Southern blot analysis of transgenic plants confirmed that the T-DNA had been integrated into the rice genome. Insect bioassays using T1 transgenic plants indicated that the mortality of the leaffolder (Cnaphalocrasis medinalis) after 7d of leaf feeding reached 38%-61% and the corrected mortality of the striped stem borer (Chilo suppressalis) after 7d of leaf feeding reached 16%-75%. The insect bioassay results demonstrated that the transgenic plants expressing the spider insecticidal protein conferred enhanced resistance to these pests.
基金supported by the National Natural Science Foundation of China (30971776)the National Transgenic Specialized Research Program of China (2008ZX08010-004)
文摘Wheat, one of the most important food crops, has been extensively studied with respects to plant regeneration and transformation employing the immature embryos as recipient tissues. However, the transformed tissues often become severely necrotic after co-cultivation with Agrobacterium, which is one of the major obstacles in gene delivery. In this study, wheat varieties CB037, Kenong 199, Xinchun 9, Lunxuan 987, and Shi 4185 showed desirable culture potential or high infection ability in Agrobacterium-mediated transformation. Similarly, optimal regeneration conditions were determined by testing their ability to inhibit the cell necrosis and cell death phenotype. Two auxins of 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-o-anisic acid (dicamba) were evaluated for highly significant effect on both callus and plantlet production, although they were genotype-dependent in wheat. Substitution of 2,4-D by dicamba enhanced the growth and regeneration ability of callus from the immature embryos of most genotypes tested. The callus growth state couldn’t be modified by adding antioxidants such as ascorbic acid, cysteine, and silver nitrate or organic additives such as thiamine HCl and asparagine to the media. On the contrary, the best tissue statement and plant regeneration was achieved by employing the media containing the simplest MS (Murashige and Skoog) components and dicamba without organic components and vitamins. Thereby, our results are thought to inhibit wheat cell necrosis effectively and suggested to be used for more wheat genotypes.
文摘A case of Meropenem as a novel antibacterial agent to suppress and eliminate Agrobacterium tumefaciens in the Agrobacterium-mediated transformation of orchid protocorm-like bodies (PLBs) has been reported in this article. The in vitro activities of meropenem and four comparator antibacterial agents against three Agrobacterium tumefaciens strains, LBA4404, EHA101, and GV3101, were assessed. In addition, the effect of meropenem on the growth of Dendrobium phalaenopsis PLBs was determined. Compared with other commonly used antibiotics (including ampicillin, carbenicillin, cefotaxime, and cefoperazone), meropenem showed the highest activity in suppressing all tested A. tumefaciens strains (minimum inhibitory concentration [MIC] 〈 0.5 mg L^-1, which is equal to minimum bactericidal concentration [MBC]). Meropenem, at all tested concentrations, except for 10 mg L^-1 concentration, had little negative effect on the growth of orchid tissues. The A. tumefaciens strain EHA101 in genetic transformation with vector plG121Hm in infected PLBs of the orchid was visually undetectable after a two-month subculture in 1/2 MS medium with 50 mg L^-1 meropenem and 25 mg L^-1 hygromacin. The expression and incorporation of the transgenes were confirmed by GUS histochemical assay and PCR analysis. Meropenem may be an alternative antibiotic for the effective suppression of A. tumefaciens in genetic transformation.
基金supported by China Agriculture Research System(Sweetpotato)the National High-Tech R&D Program of China(2009AA10Z102)the National Transgenic Plants Project of China(2009ZX08009-064B)
文摘The production of transgenic sweetpotato (cv.Xushu 18) plants exhibiting enhanced salt tolerance using salt overly sensitive (SOS) genes was achieved through Agrobacterium tumefaciens-mediated transformation.A.tumefaciens strain EHA105 harbors a binary vector pCAMBIA3301 with SOS genes (SOS1,SOS2 and SOS3) and bar gene.Selection culture was conducted using 0.3 mg L^-1 phosphinothricin (PPT).A total of 40 plants were produced from the inoculated 170 cell aggregates via somatic embryogenesis.PCR analysis showed that 37 of the 40 regenerated plants were transgenic plants.The in vitro assay demonstrated that superoxide dismutase (SOD) and proline were significantly more accumulated and malonaldehyde (MDA) was significantly less accumulated in 21 transgenic plants than in control plants when they were exposed to 86 mmol L^-1 NaCl.Salt tolerance of these 21 plants was further evaluated with Hoagland solution containing 0,51,86,and 120 mmol L^-1 NaCl in the greenhouse.The results indicated that 6 of them had significantly better growth and rooting ability than the remaining 15 transgenic plants and control plants.Expression of SOS genes in the 6 salt-tolerant transgenic plants was demonstrated by RT-PCR analysis.This study provides an alternative approach for improving salt tolerance of sweetpotato.
基金the National key research and Development Program(Grant No.2017YFD0101802)the National Natural Science Foundation of China(Grant Nos.31772326 and 31701930)China Postdoctoral Science Foundation(Grant Nos.2016M601345 and 2019T120219).
文摘Chinese cabbage,belonging to Brassica rapa species,is an important vegetable in Eastern Asia.It is well known that Chinese cabbage is quite recalcitrant to genetic transformation and the transgenic frequency is generally low.The lack of an efficient and stable genetic transformation system for Chinese cabbage has largely limited related gene functional studies.In this study,we firstly developed a regeneration system for Chinese cabbage by optimizing numerous factors,with 93.50%regeneration rate on average.Based on this,a simple and efficient Agrobacteriummediated genetic transformation methodwas established,without pre-culture procedure and concentration adjustment of hormone and AgNO_(3) in co-cultivation and selection media.Using this system,transformants could be obtained within 3.5–4.0 months.Average transformation frequency is up to 10.83%.The establishment of this simple and efficient genetic transformation method paved the way for further gene editing and functional studies in Chinese cabbage.
基金Supported by the National Natural Science Foundation of China(30170589)and the National Special Project for Research and Industrialization of Transgenic Plants (J-2002-B-006). Acknowledgements: We are grateful to Dr. Zhang Xiao-dong of Beijing Academy of Agricultural and Forestry Sciences for donating gene DRB1B and Agrobacterium tumefaciens EHA105. We thank Ms. Yang Hong of Chengdu Institute of Biology, Chinese Academy of Sciences, for conducting much work of tissue culture. We also thank Center for Application of Molecular Biology to International A griculture (CAMBIA), Australia for permission of use pCAMBIA2301.
文摘A method of Agrobacterium tumefaciens mediated transformation for perennial ryegrass was developed using the calli of ryegrass derived from mature enrbryos. The calli were inoculated with a disarmed A. tumefaciens strain EHA105 harboring binary vector p2328. Vector p2328 contained transcription factor DREB1B and neomycin phosphotransferase (npt H) genes which were driven by promoters of rd29B and CaMV35S, respectively. The inoculated calli were selected on paromomycin- or kanamycin-containing media till the established plants being transferred to soil. Six tmnsgenic plants with DREB1B had been obtained from perennial ryegrass strain Tove. PCR and Southern-blotting showed that npt Ⅱ and DREBIB genes were integrated in perennial ryegrass genome. Stress treatment confirmed that transgenic plants with higher drought tolerance were obtained.
文摘Salinity stress is one of the most serious factors limiting the distribution and productivity of crops and forest trees. The detrimental effects of salt on plants are a consequence of both a water deficit resulting in osmotic stress and the effects of excess sodium ions on critical biochemical process. A novel approach to improve salt tolerance has been established by using the technology of plant genetic transformation and using loblolly pine (Pinus taeda L.) as a model plant. Mature zygotic embryos of loblolly pine were infected with Agrobacterium tumefaciens strain LBA 4404 harbouring the plasmid pBIGM which carrying the mannitol-1-phosphate dehydrogenase (Mt1D) and glucitol-6-phosphate dehydrogenase (GutD). Organogenic transgenic calli and transgenic regenerated plantlets were produced on selection medium containing 15mg/L kanamycin and confirmed by Southern blot analysis of genomic DNA. Salt tolerance assays demonstrated that the salt tolerance of transgenic calli and regenerated plantlets were increased. These results suggested that an efficient Agrobacterium tumefaciens-mediated transformation protocol for stable integration of foreign genes into loblolly pine has been developed and this could be useful for the future studies on engineering breeding of conifers.
基金supported by the National Natural Science Foundation of China (30471212,30500347)the Earmarked Fund for Modern Agro-Industry Technology Research System,Ministry of Agriculture,China (NYCYTX-3-CY-04)
文摘Non-embryogenic calli (NEC) was inevitably and heavily produced when grape embryogenic calli (EC) was induced from explants or during the subculture of EC.A stable and highly efficient NEC transformation platform is required to further sort out and verify key genes which determine/switch the identity of NEC and EC.In this research,a vector pA5 containing a chitinase signal sequence fused to gfp (green fluorescent protein) and an HDEL motive was used to target and immobilize into Agrobacterium strain EHA105 to establish a transformation platform for Vitis vinifera L.cv.Chardonnay NEC.It was determined that NEC 10 d after subculture was the best target tissue;30 min for inoculation followed by 3 d co-cultivation with the addition of 200 μmol L-1 acetosyringone (AS) was optimized as protocol.The use of bacterial densities as 1.0 at OD600 did not result in serious tissue hypersensitive reaction and it had higher efficiency.Kanamycin at 200 mg L-1 was picked for positive expression selection.The stable transformation of NEC was proved by reverse transcription-polymerase chain reaction techniques (RT-PCR) and fluorescent microscopy after three sub-cultures of the selected cell line.Highly efficient genetic transformation protocol of grape NEC was achieved and some of the optimized parameters were different from that reported for EC.This transformation platform could facilitate the verification of candidate somatic embryogenesis (SE) decisive genes,and the successfully transformed NEC with certain genes can also be used as bioreactors for the production of functional products,as NEC not only proliferates fast,but also keeps in a rather stable condition.