Nominal (Li0.5Ce0.5)x(Na0.5Bi0.5)(1-x)Na0.5Bi4.5Ti5O18 composite ceramics were fabricated using conventional solid-state reaction method. The coexistence of bismuth layer-structured phase and perovskite phase wa...Nominal (Li0.5Ce0.5)x(Na0.5Bi0.5)(1-x)Na0.5Bi4.5Ti5O18 composite ceramics were fabricated using conventional solid-state reaction method. The coexistence of bismuth layer-structured phase and perovskite phase was determined in these ceramics using XRD technique. At room temperature, the x=0.11 sample showed the largest piezoelectric constant, d33, of about 26.5 pC/N and the largest electromechanical coupling factor, kt, of about 30%. Even after annealing at 500 ℃, the value of d33 was still about 19 pC/N, in x=0.08-0.11 samples. Moreover these composite ceramics showed low temperature coefficients of dielectric constant and high electrical resistivity in the temperature region of 450-550 ℃. These results indicated that (Li, Ce) modified NaBi5Ti5O18 composite ceramics were promising piezoelectric materials for high-temperature applications.展开更多
The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and mi...The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and microwave dielectric measurements. The experimental results show that a small amount of BaCu(B2O5) addition can effectively reduce the sintering temperature to 900℃, and induce only a limited degradation of the microwave dielectric properties. Typically, the best microwave dielectric properties of er24.5, Q×f =24 622 GHz, rf=4.2×10-6℃ -1 are obtained for 1.0% BCB-doped Li2MgTi3O8 ceramics sintered at 900℃ for 3 h. The BCB-doped Li2MgTi3O8 ceramics can be compatible with Ag electrode, which may be a strong candidate for low temperature co-fired ceramics applications.展开更多
The effects of ZnO-B2O3 (ZB2) on the sintering behavior and microwave dielectric properties of (Ca0.254Li0.19Sm0.14)TiO3 ceramics were investigated. The densities of the specimens reached the maximum value by addi...The effects of ZnO-B2O3 (ZB2) on the sintering behavior and microwave dielectric properties of (Ca0.254Li0.19Sm0.14)TiO3 ceramics were investigated. The densities of the specimens reached the maximum value by adding 3 wt.% ZB2 and then decreased. The sintering temperature of the specimens was lowered from 1300 to 1100℃ without degradation of the microwave dielectric properties. The (Ca0.254Li0.19Sm0.14)TiO3+ 3 wt.% ZB2 sintered at 1100℃ for 3 h showed good microwave dielectric properties, εr= 108.2, Qf= 6545 GHz, and rf= 6.5 ppm/℃, respectively, indicating that ZB2 was an effective sintering aid to improve the densification and microwave dielectric properties of (Ca0.254Li0.19Sm0.14)TiO3 ceramics.展开更多
The influence of Mn doping on the formation and dielectric properties of 0.7BaO·0.3SrO·(1-y)TiO2·yNb2O5 (BSTN) composite ceramics were investigated. The Mn was doped according to the formula 0.7BaO&...The influence of Mn doping on the formation and dielectric properties of 0.7BaO·0.3SrO·(1-y)TiO2·yNb2O5 (BSTN) composite ceramics were investigated. The Mn was doped according to the formula 0.7BaO·0.3SrO·(0.7-z)TiO2·0.3Nb2O5·zMnO2 (BSTNM). The results show the two phases, perovskite phase BST and the tungsten bronze phase SBN, are coexistence in BSTNM as they are in BSTN composite ceramics. The Mn ions doped in BSTN substitute for Nb5+ ions in the tungsten bronze phase, and then, the Nb5+ ions substitute for Ti4+ ions in the perovskite phase. With the increasing of Mn dopant, the content of the perovskite phase increases while that of the tungsten bronze phase decreases, and the grain size of the perovskite phase decreases. As well as, the phase transition temperature of tungsten bronze phase increases with value z increasing from 0 to about 0.05.展开更多
La_2O_3-doped CaO-MgO-Nb_2O_5-TiO_2 system ceramics were prepared by solid-state ceramic technique. The microstructure and microwave dielectric properties of CaO-MgO-Nb_2O_5-TiO_2-La_2O_3 ceramics can be adjusted by v...La_2O_3-doped CaO-MgO-Nb_2O_5-TiO_2 system ceramics were prepared by solid-state ceramic technique. The microstructure and microwave dielectric properties of CaO-MgO-Nb_2O_5-TiO_2-La_2O_3 ceramics can be adjusted by varying the amount of La^(3+) ions. The results show that the replacement of Ca^(2+) by La^(3+) at A-site of the ceramics can increase the quality factor Q·f value as well as the temperature coefficient of resonant frequency τ_f and decrease the dielectric constant ε_r. With increase of La^(3+) contents, the dielectric constant decreases from 57 to 35 and Q·f value increases from 33400 GHz to 35000 GHz (at 7.6 GHz). Meanwhile, the temperature coefficient of resonant frequency is improved towards near zero. The dielectric properties of these compounds are related to octahedra tilting due to deficient vacancies at A-site.展开更多
The effect of La^3 + , Sr^2+ on the microstructure and microwave properties of CaO-MgO-Nb2O5-TiO2 system ceramics was investigated. The result shows that a single complex perovskite structure formed within investiga...The effect of La^3 + , Sr^2+ on the microstructure and microwave properties of CaO-MgO-Nb2O5-TiO2 system ceramics was investigated. The result shows that a single complex perovskite structure formed within investigated composition range in La^3+ , Sr2-doped CaO-MgO-Nb2O5-TiO2 system ceramics. With increasing of La^3+ , Sr^2+ content, the structure of La^3+ , Sr2-doped CaO-MgO-Nb2O5-TiO2 system ceramic respectively maintain orthorhombic type.展开更多
La2O3 and SrO-doped CaO-MgO-Nb2O3-TiO2 system ceramics were prepared by solid-state ceramic technique.The microstructure and microwave dielectric properties of CaO-MgO-Nb2O5-TiO2-La2O3 cermics can be adjusted by varyi...La2O3 and SrO-doped CaO-MgO-Nb2O3-TiO2 system ceramics were prepared by solid-state ceramic technique.The microstructure and microwave dielectric properties of CaO-MgO-Nb2O5-TiO2-La2O3 cermics can be adjusted by varying the amount of La^3+ or Sr^2+ ions respectively.The replacement of Ca^2+ by La^3+ at A-site of the ceramics increases the quality factor Q value( at 7.6GHz)as well as the temperature coefficient of resonant frequency τf and decreases the dielectric constant εr and the substitution of Sr^2+ at A-site in this ceramics system exhibits opposite characteristics.The microwave properties of La^3+,Sr^2+-doped CaO-MgO-Nb2O5-TiO2 system ceramics depend on the degree of octahedral distortion inside materials.展开更多
The sintering temperature of Li2ZnTi3O8 ceramics is still high for LTCC-based applications. In this work, V2O5 was doped as the sintering aid. The sintered density, phase composition, grain size, as well as microwave ...The sintering temperature of Li2ZnTi3O8 ceramics is still high for LTCC-based applications. In this work, V2O5 was doped as the sintering aid. The sintered density, phase composition, grain size, as well as microwave dielectric properties of Li2ZnTi3O8 ceramics with the addition of V2O5 were investigated. Based on our research, V2O5 doping effectively promoted the densification of Li2ZnTi3O8 ceramics at about 900°C, without affecting the main crystal phase of the ceramics. Li2ZnTi3O8 ceramics with 0.5 wt% V2O5 doping (sintered at 900°C) exhibited the best microwave dielectric properties (Qf =?22,400 GHz at about 6 GHz, εr = 25.5, and τf = -10.8 ppm/°C). The V2O5-doped Li2ZnTi3O8 ceramics were well cofired with Ag inner paste without cracks and diffusion, indicating its significant potential for LTCC applications.展开更多
The influence that the holding time exerts on the microwave dielectric property of the glass-ceramic of SiO2-Al2O3-SrO-ZnO-La2O3under 750℃ is studied.The dielectric property is measured by perturbation method and the...The influence that the holding time exerts on the microwave dielectric property of the glass-ceramic of SiO2-Al2O3-SrO-ZnO-La2O3under 750℃ is studied.The dielectric property is measured by perturbation method and the microcrystalline phase has been analyzed by XRD and SEM.The new glass phase La2ZrTiO7 produced by the reaction(Q=1800,τε=+500ppm/℃) is of great signality to the development of new microwave dielectric materials.The sample which was insulated at 750℃ for 35h with superior dielectric properties: εr=12.82,Q=1150,τε=-19.5ppm/℃.展开更多
BaTi4O9-doped Ba0.6Sr0.4TiO3 (BST) composite ceramics were prepared by the conventional solid-state reaction and their structure, dielectric nonlinear characteristics and microwave dielectric properties were investiga...BaTi4O9-doped Ba0.6Sr0.4TiO3 (BST) composite ceramics were prepared by the conventional solid-state reaction and their structure, dielectric nonlinear characteristics and microwave dielectric properties were investigated. The secondary phase of the orthorhombic structure Ba4Ti13O30 is formed among BST composite ceramics with the increase of BaTi4O9. At the same time, a duplex or bimodal grains size distribution shows fine grains in a coarse grain matrix. The degree of frequency dispersion of dielectric permittivity below Tm is increased initially and then decreased with respect to BaTi4O9. As the BaTi4O9 content increases, the tunability of composite ceramics decreases, while the Q value increases. Inter-estingly, 70 wt% BaTi4O9-doped BST has a tunability ~4.0% (under 30 kV/cm biasing) versus a permit- tivity ~68 and quality factor ~134.1 (at ~3.2 GHz).展开更多
The effects of Li2O-MgO-B2O3 (LMB) glass additive on the sintering characteristics, phase purity, microstructure, and microwave dielectric properties of Li2MgTi3O8 ceramics were investigated. The experimental result...The effects of Li2O-MgO-B2O3 (LMB) glass additive on the sintering characteristics, phase purity, microstructure, and microwave dielectric properties of Li2MgTi3O8 ceramics were investigated. The experimental results demonstrate that the addition of LMB glass effectively lowers the sintering temperature of Li2MgTi3O8 ceramic from 1025 ℃ to 875 ℃ and induces no obvious degradation of the microwave dielectric properties. Typically, the 1.5%LMB glass-added Li2MgTi3O8 ceramic sintered at 875 ℃ for 4 h shows excellent microwave dielectric properties of Q×f=45403 GHz, εr=25.9 and τf≈0 ℃-1. The dielectric ceramic exhibits stability against the reaction with the Ag electrode, which indicates that the ceramics could be applied in multilayer microwave devices requiring low firing temperatures.展开更多
The non-stoichiometric Li_(3)Mg_(2)Sb_(1-x)O_(6)(0.05≤x≤0.125)compounds have been prepared via the mixed oxide method.The influences of Sb nonstoichiometry on the sintering behavior,microstructure,phase composition ...The non-stoichiometric Li_(3)Mg_(2)Sb_(1-x)O_(6)(0.05≤x≤0.125)compounds have been prepared via the mixed oxide method.The influences of Sb nonstoichiometry on the sintering behavior,microstructure,phase composition along with microwave dielectric performances for Li_(3)Mg_(2)Sb_(1-x)O_(6) ceramics were studied.Combined with X-ray diffraction(XRD)and Raman spectra,it was confirmed that phase composition could not be affected by the Sb nonstoichiometry and almost pure phase Li_(3)Mg_(2)SbO_(6) was formed in all compositions.Appropriate Sb-deficiency in Li_(3)Mg_(2)SbO_(6) not only lowered its sintering temperature but also remarkably improved its Q×f value.In particular,non-stoichiometric Li_(3)Mg_(2)Sb_(0.9)O_(6) ceramics sintered at 1250℃/5 h owned seldom low dielectric constant ε_(r)=10.8,near-zero resonant frequency temperature coefficient τ_(f)=-8.0 ppm/℃,and high quality factor Q×f=86,300 GHz(at 10.4 GHz).This study provides an alternative approach to ameliorate its dielectric performances for Li_(3)Mg_(2)SbO_(6)-based compounds through defect-engineering.展开更多
In this paper,the BaO-0.6ZnO-xTiO2 ceramics with x=2.5-2.8 have been prepared by the conventional solid-state ceramic route for the purpose of investigating the effect of TiO2 content on the microwave dielectric prope...In this paper,the BaO-0.6ZnO-xTiO2 ceramics with x=2.5-2.8 have been prepared by the conventional solid-state ceramic route for the purpose of investigating the effect of TiO2 content on the microwave dielectric properties.The XRD results showed that the main crystal phase in the sintered ceramics was Ba4ZnTi11O27 and that the additional phases:Ba2ZnTi5O13 and BaZn2.03Ti3.93O10.89 were presented,depending on the TiO2 contents.The SEM photographs of the samples sintered at 1200℃ for 2 h showed a high compact microstructure.Because the phase composition of ceramics samples was changed with TiO2 content,the dielectric constant(εr),the quality factor values(Q×f) and the temperature coefficient of resonant frequency(τf) were first increased,continuously came up to a peak value,and then let up.It was lucky to find that the sample with composition BaO-0.6ZnO-2.7TiO2 had both the maximum dielectric constant εr=36.1 and the maximum Q×f value of 29320 GHz,and more importantly,it had an acceptable temperature coefficient of resonant frequency τf=10.45 ppm/℃.展开更多
Sr_(2)MgWO_(6)(SMW)is a typical perovskite oxide compound,but there has been little research on the effects of processing on its dielectric properties.In this work,SMW ceramics were prepared by solid-state synthesis w...Sr_(2)MgWO_(6)(SMW)is a typical perovskite oxide compound,but there has been little research on the effects of processing on its dielectric properties.In this work,SMW ceramics were prepared by solid-state synthesis with sintering at 1450℃,1475℃,1500℃and 1525℃,respectively.XRD results confirmed that the samples possessed double perovskite structure(Fm-3m).The Raman and FTIR spectra were used to study the lattice vibrational modes.The FPSQ model was used to obtain the fitting curves of the FTIR spectra and derive the intrinsic properties of the material that were found to be in agreement with the measured data.The structure-property relationships were successfully established based on the Raman mode results.The optimal sintering temperature of SMW ceramics was identified as 1475℃due to the excellent performances characteristics(ε_(r)=16.97,Q×f=23,872 GHz,τ_(f)=-35.38 ppm/℃)obtained at this temperature.This study explored the relationships among the crystal structures,lattice vibrational characteristics and dielectric properties of SMW ceramics,so as to further understand their dielectric response mechanism and lay a solid theoretical foundation for the development of microwave ceramics.展开更多
0.5 Ca(0.6La0.267TiO3-0.5 Ca(Mg1/3Nb2/3)O3(5 CLT-5 CMN) ceramics were prepared by a reaction-sintering process and their sintering characteristics, microwave dielectric properties were investigated in detail.With...0.5 Ca(0.6La0.267TiO3-0.5 Ca(Mg1/3Nb2/3)O3(5 CLT-5 CMN) ceramics were prepared by a reaction-sintering process and their sintering characteristics, microwave dielectric properties were investigated in detail.Without any calcination stage involved,a mixture of CaCO_3, La_2 O_3, TiO_2, MgO and Nb_2 O_5 was pressed and sintered directly. Pure phase 5 CLT-5 CMN ceramics with high density and dense microstructure can be obtained after sintered at 1400 ℃ for 4 h. Compared with those prepared by the conventional ceramic route, 5 CLT-5 CMN ceramics produced by the reaction-sintering process exhibit slightly higher dielectric constant and Q×f value. Fine microwave dielectric properties of ε_r= 56.4, Q×f= 48,550 GHz and T_f = +8.7 ppm/℃ for 5 CLT-5 CMN ceramics sintered at 1400 ℃ for 4 h are obtained, suggesting reactionsintering process is a simple and efficient method to produce pure phase 5 CLT-5 CMN ceramics as a potential candidate for the fabrication of microwave devices.展开更多
The paper presents a comparative study on the electric, dielectric and microwave properties of natural rubber based composites comprising dual phase fillers prepared from furnace carbon black or conductive carbon blac...The paper presents a comparative study on the electric, dielectric and microwave properties of natural rubber based composites comprising dual phase fillers prepared from furnace carbon black or conductive carbon black with a different amount of silica. It has been established that, the specifics of the carbon phase have a marked strong effect upon the properties mentioned above. The interpenetration of the two filler phases and the grade of isolation of the conductive carbon phase by the dielectric one depend on the ratio between them. On the other hand, that leads to a change in all properties of the studied composites, which allows tailoring those characteristics.展开更多
The microwave dielectric properties and microstructure of BaTi4.3ZnyO9.6+y +0.02 mol% SnO2+0.01 mol% MnCO3+x mol% Nb2O5(x=0-0.05, y=0-0.08) system ceramics were studied as a function of the amount of ZnO and Nb2...The microwave dielectric properties and microstructure of BaTi4.3ZnyO9.6+y +0.02 mol% SnO2+0.01 mol% MnCO3+x mol% Nb2O5(x=0-0.05, y=0-0.08) system ceramics were studied as a function of the amount of ZnO and Nb2O5 doped. Addition of (y=0-0.05) ZnO and (x=0-0.025) Nb2O5 enhanced the reactivity and decreased the sintering temperature effectively. It also increased the dielectric constant ε r and quality factor Q(=1/tan 8) of the system due to the substitution of Ti^4+ ions with incorporating Zn^2+and Nb^5+ ions, which was analyzed by the reaction ZnO+Nb2O5+ 3 TiTxTi →ZnTi+ 2NbTi+3TiO2. When the system doped with (y=0.05) ZnO and (x=0.025) Nb205 were sintered at 1 160 ℃ for 6 h, the εr. Qf0 value and rfwere 36.5, 42 000 GHz, and+1.8 ppm/℃, respectively, at 5 GHz.展开更多
The effects of CuO and H3BO3 additions on the low-temperature sintering,microstructure,and microwave dielectric properties of Ba2Ti3Nb4O18 ceramics were investigated.The addition of less amount of CuO ( 〈1 wt%) con...The effects of CuO and H3BO3 additions on the low-temperature sintering,microstructure,and microwave dielectric properties of Ba2Ti3Nb4O18 ceramics were investigated.The addition of less amount of CuO ( 〈1 wt%) considerably facilitated the densification of Ba2Ti3Nb4O18 ceramics.Appropriate addition of H3BO3 ( 〈3.5 wt%) remarkably improved the microwave dielectric properties of ceramics.The addition of H3BO3 and CuO successfully reduced the sintering temperature of Ba2Ti3Nb4O18 ceramics from 1300 to 1050 ℃.Ba2Ti3Nb4O18 ceramics sintered at 1 050 ℃ for 4 h with the addition of 1.0 wt% CuO and 3.5 wt% H3BO3 exhibited good microwave dielectric properties:er=33.74,Q?f=13 812 GHz,and tf=-5.35 ppm/°C at about 5.0 GHz.展开更多
The microwave dielectric properties of ZrO2-SnO2-TiO2 (ZST) system ceramics were studied as a function of the amount of Sb2O5 dopant. With the addition of 0-0.5% Sb2O5(molar ratio), the substitution of Ti4^+ ions...The microwave dielectric properties of ZrO2-SnO2-TiO2 (ZST) system ceramics were studied as a function of the amount of Sb2O5 dopant. With the addition of 0-0.5% Sb2O5(molar ratio), the substitution of Ti4^+ ions with Sb^5+ ions decreased the sintering temperature and increased the quality factor Q due to the reduction of oxygen vacancies, When the amount of Sb^5+ increased further (above 0.5%), Q was decreased by increasing the electron concentration. When the system doped with 0.5% Sb2O5 was sintered at 1 150℃ for 6 h, the relative dielectric constant ε, Qf0, and the temperature coefficient of resonant frequency (TCF) were 38.46, 44 500 GHz, 20.0×10^-6/℃, respectively, at 6 GHz,展开更多
The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C...The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C composites were investigated in the frequency range of 8.2-12.4 GHz. Both the real and imaginary parts of the complex permittivity decreased after thermal oxidation. The composites after 100 h thermal oxidation showed that reflection loss exceeded-10 d B in the frequency of 9.7-11.9 GHz and the minimum value was-11.4 d B at 11.0 GHz. The flexural strength of composites decreased but fracture behavior was improved obviously after thermal oxidation. These results indicate that the SiCf/SiC composites containing PyC interphase after thermal oxidation possess good microwave absorbing property and fracture behavior.展开更多
基金supported by the National Natural Science Foundation of China (50702030)National Fund for Fostering Talents of Basic Science (J0730318)
文摘Nominal (Li0.5Ce0.5)x(Na0.5Bi0.5)(1-x)Na0.5Bi4.5Ti5O18 composite ceramics were fabricated using conventional solid-state reaction method. The coexistence of bismuth layer-structured phase and perovskite phase was determined in these ceramics using XRD technique. At room temperature, the x=0.11 sample showed the largest piezoelectric constant, d33, of about 26.5 pC/N and the largest electromechanical coupling factor, kt, of about 30%. Even after annealing at 500 ℃, the value of d33 was still about 19 pC/N, in x=0.08-0.11 samples. Moreover these composite ceramics showed low temperature coefficients of dielectric constant and high electrical resistivity in the temperature region of 450-550 ℃. These results indicated that (Li, Ce) modified NaBi5Ti5O18 composite ceramics were promising piezoelectric materials for high-temperature applications.
基金Project(2010GXNSFA013029) supported by the Natural Science Foundation of Guangxi Province,ChinaProject(101059529) supported by National Undergraduate Innovation Program of the Ministry of Education of China
文摘The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and microwave dielectric measurements. The experimental results show that a small amount of BaCu(B2O5) addition can effectively reduce the sintering temperature to 900℃, and induce only a limited degradation of the microwave dielectric properties. Typically, the best microwave dielectric properties of er24.5, Q×f =24 622 GHz, rf=4.2×10-6℃ -1 are obtained for 1.0% BCB-doped Li2MgTi3O8 ceramics sintered at 900℃ for 3 h. The BCB-doped Li2MgTi3O8 ceramics can be compatible with Ag electrode, which may be a strong candidate for low temperature co-fired ceramics applications.
基金supported by the National Natural Science Foundation of China (No. 50572008)
文摘The effects of ZnO-B2O3 (ZB2) on the sintering behavior and microwave dielectric properties of (Ca0.254Li0.19Sm0.14)TiO3 ceramics were investigated. The densities of the specimens reached the maximum value by adding 3 wt.% ZB2 and then decreased. The sintering temperature of the specimens was lowered from 1300 to 1100℃ without degradation of the microwave dielectric properties. The (Ca0.254Li0.19Sm0.14)TiO3+ 3 wt.% ZB2 sintered at 1100℃ for 3 h showed good microwave dielectric properties, εr= 108.2, Qf= 6545 GHz, and rf= 6.5 ppm/℃, respectively, indicating that ZB2 was an effective sintering aid to improve the densification and microwave dielectric properties of (Ca0.254Li0.19Sm0.14)TiO3 ceramics.
基金Supported by the Research Fund of the Doctoral Program of University of Jinan
文摘The influence of Mn doping on the formation and dielectric properties of 0.7BaO·0.3SrO·(1-y)TiO2·yNb2O5 (BSTN) composite ceramics were investigated. The Mn was doped according to the formula 0.7BaO·0.3SrO·(0.7-z)TiO2·0.3Nb2O5·zMnO2 (BSTNM). The results show the two phases, perovskite phase BST and the tungsten bronze phase SBN, are coexistence in BSTNM as they are in BSTN composite ceramics. The Mn ions doped in BSTN substitute for Nb5+ ions in the tungsten bronze phase, and then, the Nb5+ ions substitute for Ti4+ ions in the perovskite phase. With the increasing of Mn dopant, the content of the perovskite phase increases while that of the tungsten bronze phase decreases, and the grain size of the perovskite phase decreases. As well as, the phase transition temperature of tungsten bronze phase increases with value z increasing from 0 to about 0.05.
基金Project supported by the National Science Foundation (50272044) of China
文摘La_2O_3-doped CaO-MgO-Nb_2O_5-TiO_2 system ceramics were prepared by solid-state ceramic technique. The microstructure and microwave dielectric properties of CaO-MgO-Nb_2O_5-TiO_2-La_2O_3 ceramics can be adjusted by varying the amount of La^(3+) ions. The results show that the replacement of Ca^(2+) by La^(3+) at A-site of the ceramics can increase the quality factor Q·f value as well as the temperature coefficient of resonant frequency τ_f and decrease the dielectric constant ε_r. With increase of La^(3+) contents, the dielectric constant decreases from 57 to 35 and Q·f value increases from 33400 GHz to 35000 GHz (at 7.6 GHz). Meanwhile, the temperature coefficient of resonant frequency is improved towards near zero. The dielectric properties of these compounds are related to octahedra tilting due to deficient vacancies at A-site.
文摘The effect of La^3 + , Sr^2+ on the microstructure and microwave properties of CaO-MgO-Nb2O5-TiO2 system ceramics was investigated. The result shows that a single complex perovskite structure formed within investigated composition range in La^3+ , Sr2-doped CaO-MgO-Nb2O5-TiO2 system ceramics. With increasing of La^3+ , Sr^2+ content, the structure of La^3+ , Sr2-doped CaO-MgO-Nb2O5-TiO2 system ceramic respectively maintain orthorhombic type.
文摘La2O3 and SrO-doped CaO-MgO-Nb2O3-TiO2 system ceramics were prepared by solid-state ceramic technique.The microstructure and microwave dielectric properties of CaO-MgO-Nb2O5-TiO2-La2O3 cermics can be adjusted by varying the amount of La^3+ or Sr^2+ ions respectively.The replacement of Ca^2+ by La^3+ at A-site of the ceramics increases the quality factor Q value( at 7.6GHz)as well as the temperature coefficient of resonant frequency τf and decreases the dielectric constant εr and the substitution of Sr^2+ at A-site in this ceramics system exhibits opposite characteristics.The microwave properties of La^3+,Sr^2+-doped CaO-MgO-Nb2O5-TiO2 system ceramics depend on the degree of octahedral distortion inside materials.
文摘The sintering temperature of Li2ZnTi3O8 ceramics is still high for LTCC-based applications. In this work, V2O5 was doped as the sintering aid. The sintered density, phase composition, grain size, as well as microwave dielectric properties of Li2ZnTi3O8 ceramics with the addition of V2O5 were investigated. Based on our research, V2O5 doping effectively promoted the densification of Li2ZnTi3O8 ceramics at about 900°C, without affecting the main crystal phase of the ceramics. Li2ZnTi3O8 ceramics with 0.5 wt% V2O5 doping (sintered at 900°C) exhibited the best microwave dielectric properties (Qf =?22,400 GHz at about 6 GHz, εr = 25.5, and τf = -10.8 ppm/°C). The V2O5-doped Li2ZnTi3O8 ceramics were well cofired with Ag inner paste without cracks and diffusion, indicating its significant potential for LTCC applications.
文摘The influence that the holding time exerts on the microwave dielectric property of the glass-ceramic of SiO2-Al2O3-SrO-ZnO-La2O3under 750℃ is studied.The dielectric property is measured by perturbation method and the microcrystalline phase has been analyzed by XRD and SEM.The new glass phase La2ZrTiO7 produced by the reaction(Q=1800,τε=+500ppm/℃) is of great signality to the development of new microwave dielectric materials.The sample which was insulated at 750℃ for 35h with superior dielectric properties: εr=12.82,Q=1150,τε=-19.5ppm/℃.
基金Supported by the Ministry of Science and Technology of China through 973-project (Grant No. 2009CB623302)the Cultivation Fund of the Key Scientific and Techni-cal Innovation Project, Ministry of Education of China (Grant No.707024)+1 种基金Shanghai Committee of Science and Technology (Grant No. 07DZ22302)Shanghai Foundation Project under 06JC14070
文摘BaTi4O9-doped Ba0.6Sr0.4TiO3 (BST) composite ceramics were prepared by the conventional solid-state reaction and their structure, dielectric nonlinear characteristics and microwave dielectric properties were investigated. The secondary phase of the orthorhombic structure Ba4Ti13O30 is formed among BST composite ceramics with the increase of BaTi4O9. At the same time, a duplex or bimodal grains size distribution shows fine grains in a coarse grain matrix. The degree of frequency dispersion of dielectric permittivity below Tm is increased initially and then decreased with respect to BaTi4O9. As the BaTi4O9 content increases, the tunability of composite ceramics decreases, while the Q value increases. Inter-estingly, 70 wt% BaTi4O9-doped BST has a tunability ~4.0% (under 30 kV/cm biasing) versus a permit- tivity ~68 and quality factor ~134.1 (at ~3.2 GHz).
基金Project(2010GXNSFA013029)supported by National Undergraduates Innovating Experimentation Project of ChinaProject(101059529)supported by Natural Science Foundation of Guangxi,China
文摘The effects of Li2O-MgO-B2O3 (LMB) glass additive on the sintering characteristics, phase purity, microstructure, and microwave dielectric properties of Li2MgTi3O8 ceramics were investigated. The experimental results demonstrate that the addition of LMB glass effectively lowers the sintering temperature of Li2MgTi3O8 ceramic from 1025 ℃ to 875 ℃ and induces no obvious degradation of the microwave dielectric properties. Typically, the 1.5%LMB glass-added Li2MgTi3O8 ceramic sintered at 875 ℃ for 4 h shows excellent microwave dielectric properties of Q×f=45403 GHz, εr=25.9 and τf≈0 ℃-1. The dielectric ceramic exhibits stability against the reaction with the Ag electrode, which indicates that the ceramics could be applied in multilayer microwave devices requiring low firing temperatures.
基金support from the National Natural Science Foundation of China (Grant No.51402235)China Postdoctoral Science Foundation (2015M582696)+2 种基金Science and Technology Plan Project of Xi’an Bureau of Science and Technology (GXYD17.19)Education Department of Shaanxi Province (18JK0711)Innovation Funds of Graduate Programs of Xi’an University of Posts and Telecommunications (CXJJLD2019020)
文摘The non-stoichiometric Li_(3)Mg_(2)Sb_(1-x)O_(6)(0.05≤x≤0.125)compounds have been prepared via the mixed oxide method.The influences of Sb nonstoichiometry on the sintering behavior,microstructure,phase composition along with microwave dielectric performances for Li_(3)Mg_(2)Sb_(1-x)O_(6) ceramics were studied.Combined with X-ray diffraction(XRD)and Raman spectra,it was confirmed that phase composition could not be affected by the Sb nonstoichiometry and almost pure phase Li_(3)Mg_(2)SbO_(6) was formed in all compositions.Appropriate Sb-deficiency in Li_(3)Mg_(2)SbO_(6) not only lowered its sintering temperature but also remarkably improved its Q×f value.In particular,non-stoichiometric Li_(3)Mg_(2)Sb_(0.9)O_(6) ceramics sintered at 1250℃/5 h owned seldom low dielectric constant ε_(r)=10.8,near-zero resonant frequency temperature coefficient τ_(f)=-8.0 ppm/℃,and high quality factor Q×f=86,300 GHz(at 10.4 GHz).This study provides an alternative approach to ameliorate its dielectric performances for Li_(3)Mg_(2)SbO_(6)-based compounds through defect-engineering.
文摘In this paper,the BaO-0.6ZnO-xTiO2 ceramics with x=2.5-2.8 have been prepared by the conventional solid-state ceramic route for the purpose of investigating the effect of TiO2 content on the microwave dielectric properties.The XRD results showed that the main crystal phase in the sintered ceramics was Ba4ZnTi11O27 and that the additional phases:Ba2ZnTi5O13 and BaZn2.03Ti3.93O10.89 were presented,depending on the TiO2 contents.The SEM photographs of the samples sintered at 1200℃ for 2 h showed a high compact microstructure.Because the phase composition of ceramics samples was changed with TiO2 content,the dielectric constant(εr),the quality factor values(Q×f) and the temperature coefficient of resonant frequency(τf) were first increased,continuously came up to a peak value,and then let up.It was lucky to find that the sample with composition BaO-0.6ZnO-2.7TiO2 had both the maximum dielectric constant εr=36.1 and the maximum Q×f value of 29320 GHz,and more importantly,it had an acceptable temperature coefficient of resonant frequency τf=10.45 ppm/℃.
基金supported by National Natural Science Foundation of China(Grant 11874240)Shandong Provincial Key Research and Development Program,China(No.2019GGX101060).
文摘Sr_(2)MgWO_(6)(SMW)is a typical perovskite oxide compound,but there has been little research on the effects of processing on its dielectric properties.In this work,SMW ceramics were prepared by solid-state synthesis with sintering at 1450℃,1475℃,1500℃and 1525℃,respectively.XRD results confirmed that the samples possessed double perovskite structure(Fm-3m).The Raman and FTIR spectra were used to study the lattice vibrational modes.The FPSQ model was used to obtain the fitting curves of the FTIR spectra and derive the intrinsic properties of the material that were found to be in agreement with the measured data.The structure-property relationships were successfully established based on the Raman mode results.The optimal sintering temperature of SMW ceramics was identified as 1475℃due to the excellent performances characteristics(ε_(r)=16.97,Q×f=23,872 GHz,τ_(f)=-35.38 ppm/℃)obtained at this temperature.This study explored the relationships among the crystal structures,lattice vibrational characteristics and dielectric properties of SMW ceramics,so as to further understand their dielectric response mechanism and lay a solid theoretical foundation for the development of microwave ceramics.
基金Project supported by Anhui Provincial Natural Science Foundation(1608085ME92)
文摘0.5 Ca(0.6La0.267TiO3-0.5 Ca(Mg1/3Nb2/3)O3(5 CLT-5 CMN) ceramics were prepared by a reaction-sintering process and their sintering characteristics, microwave dielectric properties were investigated in detail.Without any calcination stage involved,a mixture of CaCO_3, La_2 O_3, TiO_2, MgO and Nb_2 O_5 was pressed and sintered directly. Pure phase 5 CLT-5 CMN ceramics with high density and dense microstructure can be obtained after sintered at 1400 ℃ for 4 h. Compared with those prepared by the conventional ceramic route, 5 CLT-5 CMN ceramics produced by the reaction-sintering process exhibit slightly higher dielectric constant and Q×f value. Fine microwave dielectric properties of ε_r= 56.4, Q×f= 48,550 GHz and T_f = +8.7 ppm/℃ for 5 CLT-5 CMN ceramics sintered at 1400 ℃ for 4 h are obtained, suggesting reactionsintering process is a simple and efficient method to produce pure phase 5 CLT-5 CMN ceramics as a potential candidate for the fabrication of microwave devices.
文摘The paper presents a comparative study on the electric, dielectric and microwave properties of natural rubber based composites comprising dual phase fillers prepared from furnace carbon black or conductive carbon black with a different amount of silica. It has been established that, the specifics of the carbon phase have a marked strong effect upon the properties mentioned above. The interpenetration of the two filler phases and the grade of isolation of the conductive carbon phase by the dielectric one depend on the ratio between them. On the other hand, that leads to a change in all properties of the studied composites, which allows tailoring those characteristics.
基金the Natural Science Foundation of Tianjin (No. 06YFJMJC01000)
文摘The microwave dielectric properties and microstructure of BaTi4.3ZnyO9.6+y +0.02 mol% SnO2+0.01 mol% MnCO3+x mol% Nb2O5(x=0-0.05, y=0-0.08) system ceramics were studied as a function of the amount of ZnO and Nb2O5 doped. Addition of (y=0-0.05) ZnO and (x=0-0.025) Nb2O5 enhanced the reactivity and decreased the sintering temperature effectively. It also increased the dielectric constant ε r and quality factor Q(=1/tan 8) of the system due to the substitution of Ti^4+ ions with incorporating Zn^2+and Nb^5+ ions, which was analyzed by the reaction ZnO+Nb2O5+ 3 TiTxTi →ZnTi+ 2NbTi+3TiO2. When the system doped with (y=0.05) ZnO and (x=0.025) Nb205 were sintered at 1 160 ℃ for 6 h, the εr. Qf0 value and rfwere 36.5, 42 000 GHz, and+1.8 ppm/℃, respectively, at 5 GHz.
文摘The effects of CuO and H3BO3 additions on the low-temperature sintering,microstructure,and microwave dielectric properties of Ba2Ti3Nb4O18 ceramics were investigated.The addition of less amount of CuO ( 〈1 wt%) considerably facilitated the densification of Ba2Ti3Nb4O18 ceramics.Appropriate addition of H3BO3 ( 〈3.5 wt%) remarkably improved the microwave dielectric properties of ceramics.The addition of H3BO3 and CuO successfully reduced the sintering temperature of Ba2Ti3Nb4O18 ceramics from 1300 to 1050 ℃.Ba2Ti3Nb4O18 ceramics sintered at 1 050 ℃ for 4 h with the addition of 1.0 wt% CuO and 3.5 wt% H3BO3 exhibited good microwave dielectric properties:er=33.74,Q?f=13 812 GHz,and tf=-5.35 ppm/°C at about 5.0 GHz.
基金Supported by Natural Science Foundation of Tianjin (No.06YFJMJC01000) the High Technique Research and Development Pro-gram of China (No.2001AA325110).
文摘The microwave dielectric properties of ZrO2-SnO2-TiO2 (ZST) system ceramics were studied as a function of the amount of Sb2O5 dopant. With the addition of 0-0.5% Sb2O5(molar ratio), the substitution of Ti4^+ ions with Sb^5+ ions decreased the sintering temperature and increased the quality factor Q due to the reduction of oxygen vacancies, When the amount of Sb^5+ increased further (above 0.5%), Q was decreased by increasing the electron concentration. When the system doped with 0.5% Sb2O5 was sintered at 1 150℃ for 6 h, the relative dielectric constant ε, Qf0, and the temperature coefficient of resonant frequency (TCF) were 38.46, 44 500 GHz, 20.0×10^-6/℃, respectively, at 6 GHz,
基金Project(51072165)supported by the National Natural Science Foundation of ChinaProject(201305)supported by the Fund of State Key Laboratory of Solidification Processing,ChinaProjects(2013JK0921,2013JK0922)supported by Shaanxi Provincial Education Department of China
文摘The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C composites were investigated in the frequency range of 8.2-12.4 GHz. Both the real and imaginary parts of the complex permittivity decreased after thermal oxidation. The composites after 100 h thermal oxidation showed that reflection loss exceeded-10 d B in the frequency of 9.7-11.9 GHz and the minimum value was-11.4 d B at 11.0 GHz. The flexural strength of composites decreased but fracture behavior was improved obviously after thermal oxidation. These results indicate that the SiCf/SiC composites containing PyC interphase after thermal oxidation possess good microwave absorbing property and fracture behavior.