With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau...With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.展开更多
为研究调谐质量阻尼器(tuned mass damper,简称TMD)在控制轨道箱梁结构振动中的应用,以高速动车组和CRTS-Ⅱ型板式无砟轨道-箱梁结构为原型,设计制作了几何相似比为10∶1的车-轨-桥耦合振动缩尺模型系统,分析了TMD在不同质量比、不同位...为研究调谐质量阻尼器(tuned mass damper,简称TMD)在控制轨道箱梁结构振动中的应用,以高速动车组和CRTS-Ⅱ型板式无砟轨道-箱梁结构为原型,设计制作了几何相似比为10∶1的车-轨-桥耦合振动缩尺模型系统,分析了TMD在不同质量比、不同位置以及不同安装数量等工况下对箱梁顶板和翼板的减振效果。结果表明:TMD质量比为0.02时减振效果优于质量比为0.01时的减振效果,在考虑结构安全及经济性的条件下,可优先选择质量比更大的TMD;不同TMD安装位置对箱梁各部件的减振效果不同,安装TMD的板件处振动响应得到了明显抑制;安装2个TMD对箱梁结构的减振效果优于安装1个TMD,其减振范围也有所提升。研究结论可为高架轨道箱梁结构的减振设计提供参考。展开更多
大型化工管道受管内流体流动、边界约束、振源激励等复杂因素影响,服役期间往往会发生振动,其振动频率相较于土木结构较高,且可能存在多个主要频率成分.若采用单一频率的调谐质量阻尼器(Tuned Mass Damper,TMD),难以达到理想的控制效果...大型化工管道受管内流体流动、边界约束、振源激励等复杂因素影响,服役期间往往会发生振动,其振动频率相较于土木结构较高,且可能存在多个主要频率成分.若采用单一频率的调谐质量阻尼器(Tuned Mass Damper,TMD),难以达到理想的控制效果,而采用多重调谐质量阻尼器(Multiple Tuned Mass Damper,MTMD)时,受现场条件限制,又存在无法确定最优安装位置等问题.本文开展了基于MTMD的管道倍频响应减振研究.首先,开展了某化工企业丙烷脱氢装置的大型管道现场实测研究,发现管道振动频率存在明显的倍数关系,即倍频现象.其次,建立局部管道有限元模型,分析管道动力特性,提出了基于数值搜索法的MTMD参数设计方法.最后,考虑化工管道现场安装条件的限制,研究了MTMD安装位置对管道减振效果的影响.数值研究结果表明,安装MTMD可有效减小管道振动响应.展开更多
超高层建筑是现代城市建设的重要标志之一,其高度已经超过了传统建筑的极限。然而,随着建筑高度不断增加,地震的破坏力也越来越强,超高层建筑面临着更加严峻的安全挑战。因此,研究超高层建筑防震支撑系统技术非常重要,Tuned Mass Damper...超高层建筑是现代城市建设的重要标志之一,其高度已经超过了传统建筑的极限。然而,随着建筑高度不断增加,地震的破坏力也越来越强,超高层建筑面临着更加严峻的安全挑战。因此,研究超高层建筑防震支撑系统技术非常重要,Tuned Mass Damper(TMD)是一种被广泛研究和应用的超高层建筑防震支撑系统技术,TMD最初是在20世纪60年代提出的,最早应用于桥梁上,后来,TMD被引入到建筑领域,并得到广泛的应用。通过精确调节质量、阻尼和弹性等参数来削弱地震引起的建筑物减震效应,从而减少了建筑物因地震造成的损害和崩塌的风险.展开更多
为研究桥梁抗风型调谐质量阻尼器(tuned mass damper, TMD)对车辆荷载引起结构振动的减振效果,并揭示车载作用下的TMD激振机理,提出了基于模态动能演化的多自由度结构TMD控制方法,确定了安装TMD的最优设计参数和布设位置;考虑桥梁有限...为研究桥梁抗风型调谐质量阻尼器(tuned mass damper, TMD)对车辆荷载引起结构振动的减振效果,并揭示车载作用下的TMD激振机理,提出了基于模态动能演化的多自由度结构TMD控制方法,确定了安装TMD的最优设计参数和布设位置;考虑桥梁有限元模型动力求解的通用性,基于桥梁三维动力分析系统BDANS软件建立了车-桥-TMD动力耦合分析系统;以经典单自由度移动弹簧质量过简支梁模型为研究对象,分析了车-桥-TMD系统振动特性,结合某深水区非通航桥梁抗风型TMD工程实例分析了TMD对车致振动的减振效果和机理。研究结果表明:TMD行程幅值与减振效果呈现正相关特点,即行程幅值越大对车-桥动力效应引起的振动减振效果越好;安装TMD可以显著提高结构的等效阻尼比,满足等效阻尼比>1%的工程需求,提高桥梁结构振动的稳定性;TMD在一定条件下可以减小车辆通过时引发桥梁竖向位移冲击效应,最大可减少3%左右;TMD对车-桥2个子系统的加速度瞬态峰值均起到了一定的抑制效果,尤其对桥梁结构竖向振动加速度作用效果明显,安装TMD后的桥梁跨中竖向振动加速度RMS值减少约20%;对大跨钢箱桥梁而言,相比较小的车辆荷载冲击效应,一阶竖弯呈邻跨反对称特性的桥梁结构在车辆通行过程中更容易激起TMD,使桥梁结构获得更佳的减振效果。展开更多
为了解决传统式调谐质量阻尼器(tuned mass damper, TMD)在控制低频桥梁结构中弹簧静伸长过长的问题,介绍了滑轮式TMD及其用于结构振动控制时的特点,指出滑轮式TMD可以有效减小弹簧静伸长量。以一座人行景观桥为例,研究了采用气动措施...为了解决传统式调谐质量阻尼器(tuned mass damper, TMD)在控制低频桥梁结构中弹簧静伸长过长的问题,介绍了滑轮式TMD及其用于结构振动控制时的特点,指出滑轮式TMD可以有效减小弹簧静伸长量。以一座人行景观桥为例,研究了采用气动措施和滑轮式TMD对该桥的涡振控制效果。风洞试验结果显示,在最优气动措施下,主梁的涡振振幅减少了一半以上,但仍未达到行人舒适性要求。基于Scanlan线性涡激力模型进行滑轮式TMD的优化设计,在气动措施的基础上进一步辅以滑轮式TMD进行涡振控制。分析结果表明,气动措施结合滑轮式TMD进行涡振控制能够满足行人舒适性要求,并确保滑轮式TMD质量块的工作行程不超过限值。通过同时采用气动措施和滑轮式TMD,可以满足主梁涡振限值、TMD弹簧静伸长量和工作行程等多重要求,从而有效控制主梁的涡振现象。本文提出的混合控制方案为类似工程中的涡振控制提供了有益参考,可为工程实践提供指导。展开更多
Optimal design theory for linear tuned mass dampers (TMD) has been thoroughly investigated, but is still under development for nonlinear TMDs. In this paper, optimization procedures in the time domain are proposed f...Optimal design theory for linear tuned mass dampers (TMD) has been thoroughly investigated, but is still under development for nonlinear TMDs. In this paper, optimization procedures in the time domain are proposed for design of a TMD with nonlinear viscous damping. A dynamic analysis of a structure implemented with a nonlinear TMD is conducted first. Optimum design parameters for the nonlinear TMD are searched using an optimization method to minimize the performance index. The feasibility of the proposed optimization method is illustrated numerically by using the Taipei 101 structure implemented with TMD. The sensitivity analysis shows that the performance index is less sensitive to the damping coefficient than to the frequency ratio. Time history analysis is conducted using the Taipei 101 structure implemented with different TMDs under wind excitation. For both linear and nonlinear TMDs, the comfort requirements for building occupants are satisfied as long as the TMD is properly designed. It was found that as the damping exponent increases, the relative displacement of the TMD decreases but the damping force increases.展开更多
High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an ef...High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom(MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building.展开更多
针对调谐质量阻尼器(tuned mass damper,TMD)系统应用于轻型结构时易失调从而导致减振效果下降的问题,提出了一种新型形状记忆合金半主动TMD系统。该系统利用钢索悬吊质量块并承担其全部重量,使用有效截面为矩形的大尺寸镍钛形状记忆合...针对调谐质量阻尼器(tuned mass damper,TMD)系统应用于轻型结构时易失调从而导致减振效果下降的问题,提出了一种新型形状记忆合金半主动TMD系统。该系统利用钢索悬吊质量块并承担其全部重量,使用有效截面为矩形的大尺寸镍钛形状记忆合金棒材,提供TMD系统水平面2个方向不同的抗弯刚度。为了研究该系统的半主动性能,进行了足尺形状记忆合金半主动TMD系统的自由振动试验,通过改变形状记忆合金的工作温度,研究了温度变化对TMD系统频率及阻尼比的影响。研究结果表明,控制形状记忆合金工作温度从-40~+80℃,TMD系统的频率随温度升高呈现升高趋势,而阻尼比随温度升高呈现下降趋势。将该新型形状记忆合金半主动TMD系统应用于受控结构中,一旦TMD失调,可以通过改变形状记忆合金的温度使其重新调谐。因此,设计的新型形状记忆合金TMD系统在轻型结构减振研究中具有一定的工程应用价值和前景。展开更多
This study investigates the effect of nonlinear inertia on the dynamic response of an asymmetric building equipped with Tuned Mass Dampers(TMDs).In the field of structural engineering,many researchers have developed m...This study investigates the effect of nonlinear inertia on the dynamic response of an asymmetric building equipped with Tuned Mass Dampers(TMDs).In the field of structural engineering,many researchers have developed models to study the behavior of nonlinear TMDs,but the effect of nonlinear inertia has not received as much attention for asymmetric buildings.To consider nonlinear inertia,the equations of motion are derived in a local rotary coordinates system.The displacements and rotations of the modeled building and TMDs are defined by five-degree-of-freedom(5-DOFs).The equations of motion are derived by using the Lagrangian method.Also in the proposed nonlinear model,the equations of motion are different from a conventional linear model.In order to compare the response of the proposed nonlinear model and a conventional linear model,numerical examples are presented and the response of the modeled buildings are derived under harmonic and earthquake excitations.It is shown that if the nonlinear inertia is considered,the response of the modeled structures changes and the conventional linear approach cannot adequately model the dynamic behavior of the asymmetric buildings which are equipped with TMDs.展开更多
为研究多重调谐质量阻尼器(Multiple Tuned Mass Damper,MTMD)抑制桥梁单阶涡振的性能,建立桥梁结构-MTMD系统竖弯涡振广义单自由度动力方程,以某大跨度悬索桥为背景进行MTMD减振控制效果和参数优化分析。采用数值方法求解动力方程,获...为研究多重调谐质量阻尼器(Multiple Tuned Mass Damper,MTMD)抑制桥梁单阶涡振的性能,建立桥梁结构-MTMD系统竖弯涡振广义单自由度动力方程,以某大跨度悬索桥为背景进行MTMD减振控制效果和参数优化分析。采用数值方法求解动力方程,获得系统在简谐涡激力下达到稳态谐振时结构的动力放大系数和MTMD对结构的附加模态阻尼比,并与单一频率调谐质量阻尼器(Single Tuned Mass Damper,STMD)的减振控制效果进行对比,然后以附加模态阻尼比为目标对MTMD进行参数优化。结果表明:MTMD比最优参数STMD拥有更宽的控制频带和更好的减振效果,经优化后的MTMD减振性能优于最优参数STMD。实际应用MTMD时,应选择较大广义质量、5~7种频率规格,并根据二者找到无量纲频率范围和各TMD阻尼比的惟一最优取值。展开更多
Tuned mass dampers (TMD) are well known as one of the most widely adopted devices in vibration control passive strategies. In the past few decades,many methods have been developed to find the optimal parameters of a T...Tuned mass dampers (TMD) are well known as one of the most widely adopted devices in vibration control passive strategies. In the past few decades,many methods have been developed to find the optimal parameters of a TMD installed on a structure and subjected to a random base excitation process,but most of them are usually based on an implicit assumption that all of the structural parameters are deterministic. However,in many real cases this simplification is unacceptable,so robust optimal design criteria becomes aviable alternative to better support engineers in the design process. In Robust Design Optimization (RDO) approaches,indeed the solution must be able to not only minimize the performance but also to limitits variation induced by uncertainty. Most of the currently available RDO methods are based on a probabilistic description of the model uncertainty,even if in many cases they are not able to explicitly include the influence of all the possible sources of uncertainties. Therefore,in this study,a fuzzy version of the robust TMD design optimization problem is proposed. The consistency of the fuzzy approach is studied with respect to the available non-probabilistic formulations reported in the literature and an application to an example of a robust design of a linear TMD subjected to base random vibrations in the presence of fuzzy uncertainties. The results show that the proposed fuzzy-based approach is able to give a set of optimal solutions both in terms of structural efficiency and sensitivity to mechanical and environmental uncertainties.展开更多
The optimisation of earthquake resistance of high buildings by multi-tuned mass dampers was investigated using bionic algorithms. In bionic or evolutionary optimisation studies the properties of parents are crossed an...The optimisation of earthquake resistance of high buildings by multi-tuned mass dampers was investigated using bionic algorithms. In bionic or evolutionary optimisation studies the properties of parents are crossed and mutated to produce a new generation with slightly different properties. The kids which best satisfy the object of the study, become the parents of the next generation. After a series of generations essential improvements of the object may be observed. Tuned mass dampers are widely used to reduce the impact of dynamic excitations on structures. A single mass system and multi-mass oscillators help to explain the mechanics of the dampers. To apply the bionic optimisation strategy to high buildings with passive tuned mass dampers subject to seismic loading a special beam element has been developed. In addition to the 6 degrees of freedom of a conventional beam element, it has 2 degrees of freedom for the displacements of the dampers. It allows for fast studies of many variants. As central result, efficient designs for damping systems along the height of an edifice are found. The impact on the structure may be reduced essentially by the use of such dampers designed to interact in an optimal way.展开更多
For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop...For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.展开更多
Active multiple tuned mass dampers (referred to as AMTMD), which consist of several active tuned mass dampers (ATMDs) with identical stiffness and damping coefficients but varying mass and control force, have rece...Active multiple tuned mass dampers (referred to as AMTMD), which consist of several active tuned mass dampers (ATMDs) with identical stiffness and damping coefficients but varying mass and control force, have recently been proposed to suppress undesirable oscillations of structures under ground acceleration. It has been shown that the AMTMD can remarkably improve the performance of multiple tuned mass dampers (MTMDs) and is also more effective in reducing structure oscillation than single ATMDs. Notwithstanding this, good performance of AMTMD (including a single ATMD illustrated from frequency-domain analysis) may not necessarily translate into a good seismic reduction behavior in the time-domain. To investigate these phenomena, a three-story steel structure model controlled by AMTMD with three ATMDs was implemented in SIMULINK and subjected to several historical earthquakes. Likewise, the structure under consideration was assumed to have uncertainty of stiffness, such as 4-15% of its initial stiffness, in the numerical simulations. The optimum design parameters of the AMTMD were obtained in the frequency-domain by implementing the minimization of the minimum values of the maximum dynamic magnification factors (DMF) of general structures with AMTMD. For comparison purposes, response analysis of the same structure with a single ATMD was also performed. The numerical analysis and comparison show that the AMTMD generally renders better effectiveness when compared with a single ATMD for structures subjected to historical earthquakes. In particular, the AMTMD can improve the effectiveness of a single ATMD for a structure with an uncertainty of stiffness of 4-15% of its initial stiffness.展开更多
基金Fundamental Research Funds for the National Natural Science Foundation of China under Grant No.52078084the Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX0623)+2 种基金the 111 project of the Ministry of Educationthe Bureau of Foreign Experts of China under Grant No.B18062China Postdoctoral Science Foundation under Grant No.2021M690838。
文摘With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.
文摘为研究调谐质量阻尼器(tuned mass damper,简称TMD)在控制轨道箱梁结构振动中的应用,以高速动车组和CRTS-Ⅱ型板式无砟轨道-箱梁结构为原型,设计制作了几何相似比为10∶1的车-轨-桥耦合振动缩尺模型系统,分析了TMD在不同质量比、不同位置以及不同安装数量等工况下对箱梁顶板和翼板的减振效果。结果表明:TMD质量比为0.02时减振效果优于质量比为0.01时的减振效果,在考虑结构安全及经济性的条件下,可优先选择质量比更大的TMD;不同TMD安装位置对箱梁各部件的减振效果不同,安装TMD的板件处振动响应得到了明显抑制;安装2个TMD对箱梁结构的减振效果优于安装1个TMD,其减振范围也有所提升。研究结论可为高架轨道箱梁结构的减振设计提供参考。
文摘大型化工管道受管内流体流动、边界约束、振源激励等复杂因素影响,服役期间往往会发生振动,其振动频率相较于土木结构较高,且可能存在多个主要频率成分.若采用单一频率的调谐质量阻尼器(Tuned Mass Damper,TMD),难以达到理想的控制效果,而采用多重调谐质量阻尼器(Multiple Tuned Mass Damper,MTMD)时,受现场条件限制,又存在无法确定最优安装位置等问题.本文开展了基于MTMD的管道倍频响应减振研究.首先,开展了某化工企业丙烷脱氢装置的大型管道现场实测研究,发现管道振动频率存在明显的倍数关系,即倍频现象.其次,建立局部管道有限元模型,分析管道动力特性,提出了基于数值搜索法的MTMD参数设计方法.最后,考虑化工管道现场安装条件的限制,研究了MTMD安装位置对管道减振效果的影响.数值研究结果表明,安装MTMD可有效减小管道振动响应.
文摘超高层建筑是现代城市建设的重要标志之一,其高度已经超过了传统建筑的极限。然而,随着建筑高度不断增加,地震的破坏力也越来越强,超高层建筑面临着更加严峻的安全挑战。因此,研究超高层建筑防震支撑系统技术非常重要,Tuned Mass Damper(TMD)是一种被广泛研究和应用的超高层建筑防震支撑系统技术,TMD最初是在20世纪60年代提出的,最早应用于桥梁上,后来,TMD被引入到建筑领域,并得到广泛的应用。通过精确调节质量、阻尼和弹性等参数来削弱地震引起的建筑物减震效应,从而减少了建筑物因地震造成的损害和崩塌的风险.
文摘为研究桥梁抗风型调谐质量阻尼器(tuned mass damper, TMD)对车辆荷载引起结构振动的减振效果,并揭示车载作用下的TMD激振机理,提出了基于模态动能演化的多自由度结构TMD控制方法,确定了安装TMD的最优设计参数和布设位置;考虑桥梁有限元模型动力求解的通用性,基于桥梁三维动力分析系统BDANS软件建立了车-桥-TMD动力耦合分析系统;以经典单自由度移动弹簧质量过简支梁模型为研究对象,分析了车-桥-TMD系统振动特性,结合某深水区非通航桥梁抗风型TMD工程实例分析了TMD对车致振动的减振效果和机理。研究结果表明:TMD行程幅值与减振效果呈现正相关特点,即行程幅值越大对车-桥动力效应引起的振动减振效果越好;安装TMD可以显著提高结构的等效阻尼比,满足等效阻尼比>1%的工程需求,提高桥梁结构振动的稳定性;TMD在一定条件下可以减小车辆通过时引发桥梁竖向位移冲击效应,最大可减少3%左右;TMD对车-桥2个子系统的加速度瞬态峰值均起到了一定的抑制效果,尤其对桥梁结构竖向振动加速度作用效果明显,安装TMD后的桥梁跨中竖向振动加速度RMS值减少约20%;对大跨钢箱桥梁而言,相比较小的车辆荷载冲击效应,一阶竖弯呈邻跨反对称特性的桥梁结构在车辆通行过程中更容易激起TMD,使桥梁结构获得更佳的减振效果。
文摘为了解决传统式调谐质量阻尼器(tuned mass damper, TMD)在控制低频桥梁结构中弹簧静伸长过长的问题,介绍了滑轮式TMD及其用于结构振动控制时的特点,指出滑轮式TMD可以有效减小弹簧静伸长量。以一座人行景观桥为例,研究了采用气动措施和滑轮式TMD对该桥的涡振控制效果。风洞试验结果显示,在最优气动措施下,主梁的涡振振幅减少了一半以上,但仍未达到行人舒适性要求。基于Scanlan线性涡激力模型进行滑轮式TMD的优化设计,在气动措施的基础上进一步辅以滑轮式TMD进行涡振控制。分析结果表明,气动措施结合滑轮式TMD进行涡振控制能够满足行人舒适性要求,并确保滑轮式TMD质量块的工作行程不超过限值。通过同时采用气动措施和滑轮式TMD,可以满足主梁涡振限值、TMD弹簧静伸长量和工作行程等多重要求,从而有效控制主梁的涡振现象。本文提出的混合控制方案为类似工程中的涡振控制提供了有益参考,可为工程实践提供指导。
文摘Optimal design theory for linear tuned mass dampers (TMD) has been thoroughly investigated, but is still under development for nonlinear TMDs. In this paper, optimization procedures in the time domain are proposed for design of a TMD with nonlinear viscous damping. A dynamic analysis of a structure implemented with a nonlinear TMD is conducted first. Optimum design parameters for the nonlinear TMD are searched using an optimization method to minimize the performance index. The feasibility of the proposed optimization method is illustrated numerically by using the Taipei 101 structure implemented with TMD. The sensitivity analysis shows that the performance index is less sensitive to the damping coefficient than to the frequency ratio. Time history analysis is conducted using the Taipei 101 structure implemented with different TMDs under wind excitation. For both linear and nonlinear TMDs, the comfort requirements for building occupants are satisfied as long as the TMD is properly designed. It was found that as the damping exponent increases, the relative displacement of the TMD decreases but the damping force increases.
文摘High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom(MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building.
文摘针对调谐质量阻尼器(tuned mass damper,TMD)系统应用于轻型结构时易失调从而导致减振效果下降的问题,提出了一种新型形状记忆合金半主动TMD系统。该系统利用钢索悬吊质量块并承担其全部重量,使用有效截面为矩形的大尺寸镍钛形状记忆合金棒材,提供TMD系统水平面2个方向不同的抗弯刚度。为了研究该系统的半主动性能,进行了足尺形状记忆合金半主动TMD系统的自由振动试验,通过改变形状记忆合金的工作温度,研究了温度变化对TMD系统频率及阻尼比的影响。研究结果表明,控制形状记忆合金工作温度从-40~+80℃,TMD系统的频率随温度升高呈现升高趋势,而阻尼比随温度升高呈现下降趋势。将该新型形状记忆合金半主动TMD系统应用于受控结构中,一旦TMD失调,可以通过改变形状记忆合金的温度使其重新调谐。因此,设计的新型形状记忆合金TMD系统在轻型结构减振研究中具有一定的工程应用价值和前景。
文摘This study investigates the effect of nonlinear inertia on the dynamic response of an asymmetric building equipped with Tuned Mass Dampers(TMDs).In the field of structural engineering,many researchers have developed models to study the behavior of nonlinear TMDs,but the effect of nonlinear inertia has not received as much attention for asymmetric buildings.To consider nonlinear inertia,the equations of motion are derived in a local rotary coordinates system.The displacements and rotations of the modeled building and TMDs are defined by five-degree-of-freedom(5-DOFs).The equations of motion are derived by using the Lagrangian method.Also in the proposed nonlinear model,the equations of motion are different from a conventional linear model.In order to compare the response of the proposed nonlinear model and a conventional linear model,numerical examples are presented and the response of the modeled buildings are derived under harmonic and earthquake excitations.It is shown that if the nonlinear inertia is considered,the response of the modeled structures changes and the conventional linear approach cannot adequately model the dynamic behavior of the asymmetric buildings which are equipped with TMDs.
文摘为研究多重调谐质量阻尼器(Multiple Tuned Mass Damper,MTMD)抑制桥梁单阶涡振的性能,建立桥梁结构-MTMD系统竖弯涡振广义单自由度动力方程,以某大跨度悬索桥为背景进行MTMD减振控制效果和参数优化分析。采用数值方法求解动力方程,获得系统在简谐涡激力下达到稳态谐振时结构的动力放大系数和MTMD对结构的附加模态阻尼比,并与单一频率调谐质量阻尼器(Single Tuned Mass Damper,STMD)的减振控制效果进行对比,然后以附加模态阻尼比为目标对MTMD进行参数优化。结果表明:MTMD比最优参数STMD拥有更宽的控制频带和更好的减振效果,经优化后的MTMD减振性能优于最优参数STMD。实际应用MTMD时,应选择较大广义质量、5~7种频率规格,并根据二者找到无量纲频率范围和各TMD阻尼比的惟一最优取值。
文摘Tuned mass dampers (TMD) are well known as one of the most widely adopted devices in vibration control passive strategies. In the past few decades,many methods have been developed to find the optimal parameters of a TMD installed on a structure and subjected to a random base excitation process,but most of them are usually based on an implicit assumption that all of the structural parameters are deterministic. However,in many real cases this simplification is unacceptable,so robust optimal design criteria becomes aviable alternative to better support engineers in the design process. In Robust Design Optimization (RDO) approaches,indeed the solution must be able to not only minimize the performance but also to limitits variation induced by uncertainty. Most of the currently available RDO methods are based on a probabilistic description of the model uncertainty,even if in many cases they are not able to explicitly include the influence of all the possible sources of uncertainties. Therefore,in this study,a fuzzy version of the robust TMD design optimization problem is proposed. The consistency of the fuzzy approach is studied with respect to the available non-probabilistic formulations reported in the literature and an application to an example of a robust design of a linear TMD subjected to base random vibrations in the presence of fuzzy uncertainties. The results show that the proposed fuzzy-based approach is able to give a set of optimal solutions both in terms of structural efficiency and sensitivity to mechanical and environmental uncertainties.
文摘The optimisation of earthquake resistance of high buildings by multi-tuned mass dampers was investigated using bionic algorithms. In bionic or evolutionary optimisation studies the properties of parents are crossed and mutated to produce a new generation with slightly different properties. The kids which best satisfy the object of the study, become the parents of the next generation. After a series of generations essential improvements of the object may be observed. Tuned mass dampers are widely used to reduce the impact of dynamic excitations on structures. A single mass system and multi-mass oscillators help to explain the mechanics of the dampers. To apply the bionic optimisation strategy to high buildings with passive tuned mass dampers subject to seismic loading a special beam element has been developed. In addition to the 6 degrees of freedom of a conventional beam element, it has 2 degrees of freedom for the displacements of the dampers. It allows for fast studies of many variants. As central result, efficient designs for damping systems along the height of an edifice are found. The impact on the structure may be reduced essentially by the use of such dampers designed to interact in an optimal way.
基金National Natural Science Foundation of China under Grant Nos.51978213 and 51778190the National Key Research and Development Program of China under Grant Nos.2017YFC0703605 and 2016YFC0701106。
文摘For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.
文摘Active multiple tuned mass dampers (referred to as AMTMD), which consist of several active tuned mass dampers (ATMDs) with identical stiffness and damping coefficients but varying mass and control force, have recently been proposed to suppress undesirable oscillations of structures under ground acceleration. It has been shown that the AMTMD can remarkably improve the performance of multiple tuned mass dampers (MTMDs) and is also more effective in reducing structure oscillation than single ATMDs. Notwithstanding this, good performance of AMTMD (including a single ATMD illustrated from frequency-domain analysis) may not necessarily translate into a good seismic reduction behavior in the time-domain. To investigate these phenomena, a three-story steel structure model controlled by AMTMD with three ATMDs was implemented in SIMULINK and subjected to several historical earthquakes. Likewise, the structure under consideration was assumed to have uncertainty of stiffness, such as 4-15% of its initial stiffness, in the numerical simulations. The optimum design parameters of the AMTMD were obtained in the frequency-domain by implementing the minimization of the minimum values of the maximum dynamic magnification factors (DMF) of general structures with AMTMD. For comparison purposes, response analysis of the same structure with a single ATMD was also performed. The numerical analysis and comparison show that the AMTMD generally renders better effectiveness when compared with a single ATMD for structures subjected to historical earthquakes. In particular, the AMTMD can improve the effectiveness of a single ATMD for a structure with an uncertainty of stiffness of 4-15% of its initial stiffness.