The microstructure, phase consistence and microhardness of thermal sprayed coatings were investigated. The tungsten and chromium carbide coatings and also composite NiCrSiB coating were analyzed. The microstructure of...The microstructure, phase consistence and microhardness of thermal sprayed coatings were investigated. The tungsten and chromium carbide coatings and also composite NiCrSiB coating were analyzed. The microstructure of coatings were observed by using optical microscopy (MO), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Almost equiaxial carbide particles settled inside the surrounded material of coating were found. The cracks propagating thorough the particles and along boundaries between the particles and surrounded material were observed. This phenomenon was connected with the porosity of coatings. The decarburization process was detected in coatings by phase composition investigation using X-ray method. The decarburization process was the reason due to which beside initial Cr3C2 the Cr7C3 and Cr23C6 particles were found. In the tungsten coatings beside the initial WC carbides the W2Cones were found.展开更多
采用化学法分别去除GH4169合金及TC4合金基材表面的WC–Co等离子喷涂层。通过正交试验对去除液配方和处理温度进行优化。GH4169基WC–Co涂层的最优去除工艺条件为:HNO3 30 m L/L,H2O2 550 m L/L,处理温度35°C。TC4合金基WC–Co涂...采用化学法分别去除GH4169合金及TC4合金基材表面的WC–Co等离子喷涂层。通过正交试验对去除液配方和处理温度进行优化。GH4169基WC–Co涂层的最优去除工艺条件为:HNO3 30 m L/L,H2O2 550 m L/L,处理温度35°C。TC4合金基WC–Co涂层的最优去除工艺条件为:HNO3 70 m L/L,H2O2 550 m L/L,处理温度30°C。采用上述工艺可有效去除GH4169和TC4表面的WC–Co涂层,对基体无明显的化学腐蚀,不会导致基体吸氢。1 L去除液可处理约10 dm2 0.3 mm厚的WC–Co涂层。展开更多
采用电化学法褪除45钢表面的WC–10Co–4Cr超音速喷涂层,通过回归分析和响应曲面分析对褪除工艺进行优化,得到最优工艺条件为:褪除粉(主要成分是柠檬酸钠和碳酸钠)0.25~0.30 kg/L,p H 11~12,室温,不锈钢为阴极,电流密度5 A/dm2,时间80~9...采用电化学法褪除45钢表面的WC–10Co–4Cr超音速喷涂层,通过回归分析和响应曲面分析对褪除工艺进行优化,得到最优工艺条件为:褪除粉(主要成分是柠檬酸钠和碳酸钠)0.25~0.30 kg/L,p H 11~12,室温,不锈钢为阴极,电流密度5 A/dm2,时间80~90 min。展开更多
基金financially supported by polish project NR15 0001 06the Ministry of Higher Education and Science/AGH University of Science and Technology,Krakow,Poland,grant number 11.11.180.255 is greatly acknowledged.
文摘The microstructure, phase consistence and microhardness of thermal sprayed coatings were investigated. The tungsten and chromium carbide coatings and also composite NiCrSiB coating were analyzed. The microstructure of coatings were observed by using optical microscopy (MO), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Almost equiaxial carbide particles settled inside the surrounded material of coating were found. The cracks propagating thorough the particles and along boundaries between the particles and surrounded material were observed. This phenomenon was connected with the porosity of coatings. The decarburization process was detected in coatings by phase composition investigation using X-ray method. The decarburization process was the reason due to which beside initial Cr3C2 the Cr7C3 and Cr23C6 particles were found. In the tungsten coatings beside the initial WC carbides the W2Cones were found.
文摘采用化学法分别去除GH4169合金及TC4合金基材表面的WC–Co等离子喷涂层。通过正交试验对去除液配方和处理温度进行优化。GH4169基WC–Co涂层的最优去除工艺条件为:HNO3 30 m L/L,H2O2 550 m L/L,处理温度35°C。TC4合金基WC–Co涂层的最优去除工艺条件为:HNO3 70 m L/L,H2O2 550 m L/L,处理温度30°C。采用上述工艺可有效去除GH4169和TC4表面的WC–Co涂层,对基体无明显的化学腐蚀,不会导致基体吸氢。1 L去除液可处理约10 dm2 0.3 mm厚的WC–Co涂层。