Two-dimensional(2D)tungsten selenide(WSe_(2))is promising candidate material for future electronic applications,owing to its potential for ultimate device scaling.For improving the electronic performance of WSe_(2)-ba...Two-dimensional(2D)tungsten selenide(WSe_(2))is promising candidate material for future electronic applications,owing to its potential for ultimate device scaling.For improving the electronic performance of WSe_(2)-based field-effect transistors(FETs),the modification of surface properties is essential.In this study,the seamless structural phase transition in WSe_(2) lattice is achieved by soft oxygen plasma,regulating the electrical conductance of WSe_(2)-based FETs.We found that during the soft oxygen plasma treatment with optimal processing time,the generated oxygen ions can substitute some selenium atoms and thus locally modify the bond length,inducing 2H→1T phase transition in WSe_(2) with seamless interfaces.The mosaic structures have been proven to tailor the electronic structure and increase the hole carrier concentration inside WSe_(2),significantly increasing the channel conductance of WSe_(2) FETs.With the further increase of the oxygen plasma treatment time,the creation of more selenium vacancy defects leads to the electronic doping,resulting in the reduction of conductance.Benefiting from the hexagonal boron nitride(h-BN)encapsulation to interrupt the partial structural relaxation from 1T to 2H phase,our WSe_(2) FET exhibits high electronic stability with conductance of 6.8×10^(-4) S,which is about four orders of magnitude higher than 2H WSe_(2)(5.8×10^(-8) S).This study could further broaden the WSe_(2) FETs in applications for functionalization and integration in electronics.展开更多
Orientation-controlled growth of two-dimensional(2D)transition metal dichalcogenides(TMDCs)may enable many new electronic and optical applications.However,previous studies reporting aligned growth of WSe2 usually yiel...Orientation-controlled growth of two-dimensional(2D)transition metal dichalcogenides(TMDCs)may enable many new electronic and optical applications.However,previous studies reporting aligned growth of WSe2 usually yielded very small domain sizes.Herein,we introduced gold vapor into the chemical vapor deposition(CVD)process as a catalyst to assist the growth of WSe2 and successfully achieved highly aligned monolayer WSe2 triangular flakes grown on c-plane sapphire with large domain sizes(130μm)and fast growth rate(4.3μm·s^−1).When the aligned WSe2 domains merged together,a continuous monolayer WSe2 was formed with good uniformity.After transferring to Si/SiO2 substrates,field effect transistors were fabricated on the continuous monolayer WSe2,and an average mobility of 12 cm^2·V^−1·s−1 was achieved,demonstrating the good quality of the material.This report paves the way to study the effect of catalytic metal vapor in the CVD process of TMDCs and contributes a novel approach to realize the growth of aligned TMDC flakes.展开更多
基金supported by the National Natural Science Foundation of China(No.11774278)the Fundamental Research Funds for Central Universities(No.2012jdgz04).
文摘Two-dimensional(2D)tungsten selenide(WSe_(2))is promising candidate material for future electronic applications,owing to its potential for ultimate device scaling.For improving the electronic performance of WSe_(2)-based field-effect transistors(FETs),the modification of surface properties is essential.In this study,the seamless structural phase transition in WSe_(2) lattice is achieved by soft oxygen plasma,regulating the electrical conductance of WSe_(2)-based FETs.We found that during the soft oxygen plasma treatment with optimal processing time,the generated oxygen ions can substitute some selenium atoms and thus locally modify the bond length,inducing 2H→1T phase transition in WSe_(2) with seamless interfaces.The mosaic structures have been proven to tailor the electronic structure and increase the hole carrier concentration inside WSe_(2),significantly increasing the channel conductance of WSe_(2) FETs.With the further increase of the oxygen plasma treatment time,the creation of more selenium vacancy defects leads to the electronic doping,resulting in the reduction of conductance.Benefiting from the hexagonal boron nitride(h-BN)encapsulation to interrupt the partial structural relaxation from 1T to 2H phase,our WSe_(2) FET exhibits high electronic stability with conductance of 6.8×10^(-4) S,which is about four orders of magnitude higher than 2H WSe_(2)(5.8×10^(-8) S).This study could further broaden the WSe_(2) FETs in applications for functionalization and integration in electronics.
文摘Orientation-controlled growth of two-dimensional(2D)transition metal dichalcogenides(TMDCs)may enable many new electronic and optical applications.However,previous studies reporting aligned growth of WSe2 usually yielded very small domain sizes.Herein,we introduced gold vapor into the chemical vapor deposition(CVD)process as a catalyst to assist the growth of WSe2 and successfully achieved highly aligned monolayer WSe2 triangular flakes grown on c-plane sapphire with large domain sizes(130μm)and fast growth rate(4.3μm·s^−1).When the aligned WSe2 domains merged together,a continuous monolayer WSe2 was formed with good uniformity.After transferring to Si/SiO2 substrates,field effect transistors were fabricated on the continuous monolayer WSe2,and an average mobility of 12 cm^2·V^−1·s−1 was achieved,demonstrating the good quality of the material.This report paves the way to study the effect of catalytic metal vapor in the CVD process of TMDCs and contributes a novel approach to realize the growth of aligned TMDC flakes.