In this study,grey cast iron matrix composites reinforced by different volume fractions of tungsten fibers(Vr=0.95%,1.90%,2.85%,3.80%)were investigated in as-cast and under the heat treatment temperatures of 1,000℃an...In this study,grey cast iron matrix composites reinforced by different volume fractions of tungsten fibers(Vr=0.95%,1.90%,2.85%,3.80%)were investigated in as-cast and under the heat treatment temperatures of 1,000℃and 1,100℃.The microstructure and mechanical properties of the composites were analyzed and tested by means of SEM,micro-hardness tester and three-point bend testing.The results show that with increasing of the volume fraction of tungsten fibers,the composites reinforced by the tungsten fiber have higher flexural strength and modulus than that of cast iron without reinforcement,and the flexural strength increases with the increasing of heat treatment temperatures.Due to diffusion reaction between matrix and reinforcing phases,the process of heat treatment,the number of graphite flakes in the matrix seemingly becomes lower;and some hard carbide particles are formed around the residual tungsten fibers.Not only does the hardness of both matrix and reinforcement change tremendously,but also the region of reinforcement is also extended from the original 0.11 mm to 0.19 mm in radius.展开更多
One of the serious concerns for tungsten materials in fusion devices is the radiation defects caused by helium plasma irradiation since helium is a fusion product. The fiber-formed nanostructure is thought to have a p...One of the serious concerns for tungsten materials in fusion devices is the radiation defects caused by helium plasma irradiation since helium is a fusion product. The fiber-formed nanostructure is thought to have a possible weakness against the plasma heat flux on the plasma- facing component and also may destroy the reflectivity of optical mirrors. In this paper an inter- esting method for the recovery of such tungsten surfaces is shown. The recovery process depends on the grade and manufacturing process of tungsten materials.展开更多
The sPHENIX experiment is a new generation of large acceptance detectors at the relativistic heavy ion collider at Brookhaven National Laboratory,with scientific goals focusing on probing the strongly interacting Quar...The sPHENIX experiment is a new generation of large acceptance detectors at the relativistic heavy ion collider at Brookhaven National Laboratory,with scientific goals focusing on probing the strongly interacting Quark–Gluon plasma with hard probes of jets,open heavy flavor particles,andγproduction.The EMCal detector,which covers the pseudo-rapidity region of|η|≤1.1,is an essential subsystem of sPHENIX.In this study,we focused on producing and testing EMCal blocks covering a pseudo-rapidity of|η|∈[0.8,1.1].These,in conjunction with the central pseudo-rapidity EMCal blocks,significantly enhance the sPHENIX physics capability of the jet andγparticle measurements.In this paper,the detector module production and testing of sPHENIX W-powder/scintillating fiber(W/ScFi)electromagnetic calorimeter blocks are presented.The selection of the tungsten powder,mold fabrication,QA procedures,and cosmic ray test results are discussed.展开更多
基金supported by the Key Innovation Plan in Science & Technology,Shaanxi Province,China(Project No.2004ZKC05-02)the Research Center for"13115"Innovation Engineering in Science & Technology,Shaanxi Province,China(Project No.2007ZDGC-17)
文摘In this study,grey cast iron matrix composites reinforced by different volume fractions of tungsten fibers(Vr=0.95%,1.90%,2.85%,3.80%)were investigated in as-cast and under the heat treatment temperatures of 1,000℃and 1,100℃.The microstructure and mechanical properties of the composites were analyzed and tested by means of SEM,micro-hardness tester and three-point bend testing.The results show that with increasing of the volume fraction of tungsten fibers,the composites reinforced by the tungsten fiber have higher flexural strength and modulus than that of cast iron without reinforcement,and the flexural strength increases with the increasing of heat treatment temperatures.Due to diffusion reaction between matrix and reinforcing phases,the process of heat treatment,the number of graphite flakes in the matrix seemingly becomes lower;and some hard carbide particles are formed around the residual tungsten fibers.Not only does the hardness of both matrix and reinforcement change tremendously,but also the region of reinforcement is also extended from the original 0.11 mm to 0.19 mm in radius.
基金supported by a Grant-in-aid for scientific Research (B) (20360414) from JSPS
文摘One of the serious concerns for tungsten materials in fusion devices is the radiation defects caused by helium plasma irradiation since helium is a fusion product. The fiber-formed nanostructure is thought to have a possible weakness against the plasma heat flux on the plasma- facing component and also may destroy the reflectivity of optical mirrors. In this paper an inter- esting method for the recovery of such tungsten surfaces is shown. The recovery process depends on the grade and manufacturing process of tungsten materials.
基金supported by the National Key R&D Program from the Ministry of Science and Technology of China(Nos.2019YFE0114300 and 2022YFA1604900)the National Natural Science Foundation of China(No.11905036)+1 种基金the STCSM(No.23590780100)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34030200)。
文摘The sPHENIX experiment is a new generation of large acceptance detectors at the relativistic heavy ion collider at Brookhaven National Laboratory,with scientific goals focusing on probing the strongly interacting Quark–Gluon plasma with hard probes of jets,open heavy flavor particles,andγproduction.The EMCal detector,which covers the pseudo-rapidity region of|η|≤1.1,is an essential subsystem of sPHENIX.In this study,we focused on producing and testing EMCal blocks covering a pseudo-rapidity of|η|∈[0.8,1.1].These,in conjunction with the central pseudo-rapidity EMCal blocks,significantly enhance the sPHENIX physics capability of the jet andγparticle measurements.In this paper,the detector module production and testing of sPHENIX W-powder/scintillating fiber(W/ScFi)electromagnetic calorimeter blocks are presented.The selection of the tungsten powder,mold fabrication,QA procedures,and cosmic ray test results are discussed.