Two series of WP/Al2O3 catalyst precursors with WP mass loading in the range 18.5%—37.1% were prepared using the impregnation method and mixing method, respectively, and the catalysts were then obtained by temperatur...Two series of WP/Al2O3 catalyst precursors with WP mass loading in the range 18.5%—37.1% were prepared using the impregnation method and mixing method, respectively, and the catalysts were then obtained by temperature-programmed reduction of supported tungsten phosphate (precursor of WP/Al2O3 catatlysts) in H2 at 650℃ for 4h. The catalysts were characterized by XRD, BET, TG/DTA , XPS and 31P MAS-NMR. The activities of these catalysts were tested in the hydrodenitrogenation (HDN) of pyridine and hydrodesulfurization (HDS) of thiophene at 340℃ and 3.0MPa. The results showed that owing to the stronger interaction of the support with the active species, the precursor of WP/Al2O3 catalyst was more difficultly phosphided and a greater amount of W spe- cies was in a high valence state W6+ on the surface of the catalyst prepared by the impregnation method than that by the mixing method. 31P MAS-NMR results indicated that 31P shift from 85% H3PO4 of 2.55×10-4 for WP and 2.57 ×10-4 for WP/γ-Al2O3 catalysts prepared by mixing method. Such WP/Al2O3 catalysts showed higher HDN activi- ties and lower HDS activities than those prepared by the impregnation method under the same loading of WP. WP/γ-Al2O3 catalysts with weak interaction between support and active species were favorable for HDN reaction while the WP/γ-Al2O3 catalysts with strong interaction were favorable for HDS reaction.展开更多
As one of important members of refractory materials,tungsten phosphide(WP)holds great potential for fundamental study and industrial applications in many fields of science and technology,due to its excellent propertie...As one of important members of refractory materials,tungsten phosphide(WP)holds great potential for fundamental study and industrial applications in many fields of science and technology,due to its excellent properties such as superconductivity and as-predicted topological band structure.However,synthesis of high-quality WP crystals is still a challenge by using tradition synthetic methods,because the synthesis temperature for growing its large crystals is very stringently required to be as high as 3000℃,which is far beyond the temperature capability of most laboratory-based devices for crystal growth.In addition,high temperature often induces the decomposition of metal phosphides,leading to off-stoichiometric samples based on which the materials'intrinsic properties cannot be explored.In this work,we report a high-pressure synthesis of single-crystal WP through a direct crystallization from cooling the congruent W-P melts at 5 GPa and^3200℃.In combination of x-ray diffraction,electron microscope,and thermal analysis,the crystal structure,morphology,and stability of recovered sample are well investigated.The final product is phase-pure and nearly stoichiometric WP in a single-crystal form with a large grain size,in excess of one millimeter,thus making it feasible to implement most experimental measurements,especially,for the case where a large crystal is required.Success in synthesis of high-quality WP crystals at high pressure can offer great opportunities for determining their intrinsic properties and also making more efforts to study the family of transition-metal phosphides.展开更多
It has been of interest in seeking electrocatalysts that could exercise equally high-efficient and durable hydrogen evolution upon nonselective electrolytes in both acidic and alkaline environments. Herein, we report ...It has been of interest in seeking electrocatalysts that could exercise equally high-efficient and durable hydrogen evolution upon nonselective electrolytes in both acidic and alkaline environments. Herein, we report a facile strategy to fabricate cobalt tungsten phosphides (CoxW2−xP2/C) hollow polyhedrons with tunable composition based on metal-organic frameworks (MOFs) template method. By the deliberate control of W doping, the synthesized catalyst with the composition of Co0.9W1.1P2/C is found to be able to achieve a current density of 10 mA·cm^(−2) at overpotentials of 35 and 54 mV in acidic and alkaline media, respectively. This combined electrochemical property stands atop the state-of-the-art electrocatalyst counterparts. To unveil the peculiar behavior of the structure, density functional theory (DFT) calculation was implemented and reveals that the surface W-doping facilitates the optimization of hydrogen absorption free energy (ΔGH*) as well as the thermodynamic and kinetics barriers for water dissociation, which is coupled with the hollow structure of Co-W phosphides, leading to the prominent HER catalytic performance.展开更多
Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors(supported phospho-tungstate catalysts)in H2 and characterized by X-ray diffraction(XRD),BET,temperature-prog...Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors(supported phospho-tungstate catalysts)in H2 and characterized by X-ray diffraction(XRD),BET,temperature-programmed desorption of ammonia(NH3-TPD)and X-ray photoelectron spectroscopy(XPS).The reduction-phosphiding processes of the precursors were investigated by thermogravimetry and differential thermal analysis(TG-DTA)and the suitable phosphiding temperatures were defined.The hydrodesulfurization(HDS)and hydrodenitrogenation(HDN)activities of the catalysts were tested by using thiophene,pyridine,dibenzothiophene,carbazole and diesel oil as the feedstock.The TiO2,c-Al_(2)O_(3) supports and the Ni,Co promoters could remarkably increase and stabilize active W species on the catalyst surface.A suitable amount of Ni(3%–5%),Co(5%–7%)and V(1%–3%)could increase dispersivity of the W species and the BET surface area of the WP/c-Al_(2)O_(3) catalyst.The WP/c-Al_(2)O_(3) catalyst possesses much higher thiophene HDS and carbazole HDN activities and the WP/TiO2 catalyst has much higher dibenzothiophene(DBT)HDS and pyridine HDN activities.The Ni,Co and V can obviously promote the HDS activity and inhibit the HDN activity of the WP/c-Al_(2)O_(3) catalyst.The G-Ni5 catalyst possesses a much higher diesel oil HDS activity than the sulphided industrial NiW/c-Al_(2)O_(3) catalyst.In general,a support or promoter in the WP/c-Al_(2)O_(3) catalyst which can increase the amount and dispersivity of the active W species can promote its HDS and HDN activities.展开更多
Modulate the electronic structure and surface energy by nanostructure and heteroatom doping is an efficient strategy to improve electrocatalytic activity of hydrogen evolution reaction(HER).Herein,nickel incorporated ...Modulate the electronic structure and surface energy by nanostructure and heteroatom doping is an efficient strategy to improve electrocatalytic activity of hydrogen evolution reaction(HER).Herein,nickel incorporated WP_(2) self-supporting nanosheet arrays cathode was synthesized on carbon cloth(Ni-WP_(2) NS/CC)by in-situ phosphating reduction of the Ni-doped WO3.It shows that heteroatom doping and the three-dimensional(3D)nanosheet arrays morphology both facilitate to reduce the interfacial transfer resistance and increase electrochemical-active surface areas,which effectively improve electrocatalytic hydrogen evolution reaction(HER)activity.The optimized catalyst,1%Ni-WP_(2) NS/CC,exhibits an outstanding electrocatalytic performance with an overpotential of 110 m V at 10 m A cm^(-2) and a Tafel slope of 65 m V dec^(-1) in the acid solution.DFT calculations further demonstrate the nickel doping can adjust the intrinsic structure of electronics,lower the Gibbs free energy of adsorption of hydrogen(DGH*),and effectively improve the HER performance.展开更多
Hydrogen fuel is recognized as a promising energy carrier for the sustainable development of global energy system and the green hydrogen production via water electrolysis attracts great interest.The development of cos...Hydrogen fuel is recognized as a promising energy carrier for the sustainable development of global energy system and the green hydrogen production via water electrolysis attracts great interest.The development of cost-effective electrocatalysts for water electrolysis is important for enhancing green hydrogen production efficiency.Recently,tungsten pnictides(phosphides and nitrides)have emerged as promising catalysts for water electrolysis,and efficient tungsten pnictide-based catalysts with different nanostructures,compositions,and surface chemical properties have been developed.In this review,recent progress in the design of tungsten pnictide-based electrocatalysts for water electrolysis is comprehensively analyzed.The synthesis of tungsten pnictide-based electrocatalysts are discussed briefly.Then,current achievements in developing efficient tungsten pnictide electrocatalysts for water electrolysis are detailed,and four key catalyst design strategies(i.e.,nanostructure control,heteroatom doping,defect engineering,and heterostructure design)are outlined.The physicochemical properties-catalytic performance relationship of tungsten pnictide-based electrocatalysts is also discussed.At last,perspectives in this field are put forward for guiding further research on the design and application of high-performance tungsten pnictide-based electrocatalysts.展开更多
基金Supported by the National Natural Science Foundation of China (No.200273011), the National 973 Project (No.G2000048003)and the Beijing Natural Science Foundation (No.2052009).
文摘Two series of WP/Al2O3 catalyst precursors with WP mass loading in the range 18.5%—37.1% were prepared using the impregnation method and mixing method, respectively, and the catalysts were then obtained by temperature-programmed reduction of supported tungsten phosphate (precursor of WP/Al2O3 catatlysts) in H2 at 650℃ for 4h. The catalysts were characterized by XRD, BET, TG/DTA , XPS and 31P MAS-NMR. The activities of these catalysts were tested in the hydrodenitrogenation (HDN) of pyridine and hydrodesulfurization (HDS) of thiophene at 340℃ and 3.0MPa. The results showed that owing to the stronger interaction of the support with the active species, the precursor of WP/Al2O3 catalyst was more difficultly phosphided and a greater amount of W spe- cies was in a high valence state W6+ on the surface of the catalyst prepared by the impregnation method than that by the mixing method. 31P MAS-NMR results indicated that 31P shift from 85% H3PO4 of 2.55×10-4 for WP and 2.57 ×10-4 for WP/γ-Al2O3 catalysts prepared by mixing method. Such WP/Al2O3 catalysts showed higher HDN activi- ties and lower HDS activities than those prepared by the impregnation method under the same loading of WP. WP/γ-Al2O3 catalysts with weak interaction between support and active species were favorable for HDN reaction while the WP/γ-Al2O3 catalysts with strong interaction were favorable for HDS reaction.
基金the National Key Research and Development Program of China(Grant Nos.2016YFA0401503 and 2018YFA0305700)the National Natural Science Foundation of China(Grant No.11575288)+4 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2016006)the Key Research Platforms and Research Projects of Universities in Guangdong Province,China(Grant No.2018KZDXM062)the Guangdong Innovative&Entrepreneurial Research Team Program,China(Grant No.2016ZT06C279)the Shenzhen Peacock Plan,China(Grant No.KQTD2016053019134356)the Shenzhen Development&Reform Commission Foundation for Novel Nano-Material Sciences,China,the Research Platform for Crystal Growth&Thin-Film Preparation at SUST,China,and the Shenzhen Development and Reform Commission Foundation for Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressure,China.
文摘As one of important members of refractory materials,tungsten phosphide(WP)holds great potential for fundamental study and industrial applications in many fields of science and technology,due to its excellent properties such as superconductivity and as-predicted topological band structure.However,synthesis of high-quality WP crystals is still a challenge by using tradition synthetic methods,because the synthesis temperature for growing its large crystals is very stringently required to be as high as 3000℃,which is far beyond the temperature capability of most laboratory-based devices for crystal growth.In addition,high temperature often induces the decomposition of metal phosphides,leading to off-stoichiometric samples based on which the materials'intrinsic properties cannot be explored.In this work,we report a high-pressure synthesis of single-crystal WP through a direct crystallization from cooling the congruent W-P melts at 5 GPa and^3200℃.In combination of x-ray diffraction,electron microscope,and thermal analysis,the crystal structure,morphology,and stability of recovered sample are well investigated.The final product is phase-pure and nearly stoichiometric WP in a single-crystal form with a large grain size,in excess of one millimeter,thus making it feasible to implement most experimental measurements,especially,for the case where a large crystal is required.Success in synthesis of high-quality WP crystals at high pressure can offer great opportunities for determining their intrinsic properties and also making more efforts to study the family of transition-metal phosphides.
基金This work was supported by the National Science Foundation for Young Scientists of China (No. 51901018)China Postdoctoral Science Foundation (No. 2019M660456)+4 种基金the National Natural Science Foundation of China (Nos. 51771027 and 21676216)Young Elite Scientists Sponsorship Program by China Association for Science and Technology (YESS, 2019QNRC001)the Fundamental Research Funds for the Central Universities (No. FRF-MP-19-001)National Key Research and Development Program of China (No. 2017YFB0702100)Singapore MOE AcRF Tier 1 grant M4011528.
文摘It has been of interest in seeking electrocatalysts that could exercise equally high-efficient and durable hydrogen evolution upon nonselective electrolytes in both acidic and alkaline environments. Herein, we report a facile strategy to fabricate cobalt tungsten phosphides (CoxW2−xP2/C) hollow polyhedrons with tunable composition based on metal-organic frameworks (MOFs) template method. By the deliberate control of W doping, the synthesized catalyst with the composition of Co0.9W1.1P2/C is found to be able to achieve a current density of 10 mA·cm^(−2) at overpotentials of 35 and 54 mV in acidic and alkaline media, respectively. This combined electrochemical property stands atop the state-of-the-art electrocatalyst counterparts. To unveil the peculiar behavior of the structure, density functional theory (DFT) calculation was implemented and reveals that the surface W-doping facilitates the optimization of hydrogen absorption free energy (ΔGH*) as well as the thermodynamic and kinetics barriers for water dissociation, which is coupled with the hollow structure of Co-W phosphides, leading to the prominent HER catalytic performance.
基金State Key Development Basic Research of China(Grant No.G2000048003)the National Natural Science Foundation of China(Grant No.200273011)China Petrochemical Corporation(X501022).
文摘Supported tungsten phosphide catalysts were prepared by temperature-programmed reduction of their precursors(supported phospho-tungstate catalysts)in H2 and characterized by X-ray diffraction(XRD),BET,temperature-programmed desorption of ammonia(NH3-TPD)and X-ray photoelectron spectroscopy(XPS).The reduction-phosphiding processes of the precursors were investigated by thermogravimetry and differential thermal analysis(TG-DTA)and the suitable phosphiding temperatures were defined.The hydrodesulfurization(HDS)and hydrodenitrogenation(HDN)activities of the catalysts were tested by using thiophene,pyridine,dibenzothiophene,carbazole and diesel oil as the feedstock.The TiO2,c-Al_(2)O_(3) supports and the Ni,Co promoters could remarkably increase and stabilize active W species on the catalyst surface.A suitable amount of Ni(3%–5%),Co(5%–7%)and V(1%–3%)could increase dispersivity of the W species and the BET surface area of the WP/c-Al_(2)O_(3) catalyst.The WP/c-Al_(2)O_(3) catalyst possesses much higher thiophene HDS and carbazole HDN activities and the WP/TiO2 catalyst has much higher dibenzothiophene(DBT)HDS and pyridine HDN activities.The Ni,Co and V can obviously promote the HDS activity and inhibit the HDN activity of the WP/c-Al_(2)O_(3) catalyst.The G-Ni5 catalyst possesses a much higher diesel oil HDS activity than the sulphided industrial NiW/c-Al_(2)O_(3) catalyst.In general,a support or promoter in the WP/c-Al_(2)O_(3) catalyst which can increase the amount and dispersivity of the active W species can promote its HDS and HDN activities.
基金supported by the National Natural Science Foundation of China(21503051,21563007)the Natural Science Foundation of Guangxi Province(2019GXNSFFA245016,2018GXNSFAA138108)。
文摘Modulate the electronic structure and surface energy by nanostructure and heteroatom doping is an efficient strategy to improve electrocatalytic activity of hydrogen evolution reaction(HER).Herein,nickel incorporated WP_(2) self-supporting nanosheet arrays cathode was synthesized on carbon cloth(Ni-WP_(2) NS/CC)by in-situ phosphating reduction of the Ni-doped WO3.It shows that heteroatom doping and the three-dimensional(3D)nanosheet arrays morphology both facilitate to reduce the interfacial transfer resistance and increase electrochemical-active surface areas,which effectively improve electrocatalytic hydrogen evolution reaction(HER)activity.The optimized catalyst,1%Ni-WP_(2) NS/CC,exhibits an outstanding electrocatalytic performance with an overpotential of 110 m V at 10 m A cm^(-2) and a Tafel slope of 65 m V dec^(-1) in the acid solution.DFT calculations further demonstrate the nickel doping can adjust the intrinsic structure of electronics,lower the Gibbs free energy of adsorption of hydrogen(DGH*),and effectively improve the HER performance.
基金supported by the Key Research and Development Project for the High level Technological Talent ofLvliang city(Rc2020214,2023GXYF09,2022RC15)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2021L564)+2 种基金Research Project Supported by Shanxi Scholarship Council of China(2022-182)Scientific Research Start-up Funds of Lyuliang UniversityWuhan Yingcai-Outstanding Young Talents(No.PM0218003)。
文摘Hydrogen fuel is recognized as a promising energy carrier for the sustainable development of global energy system and the green hydrogen production via water electrolysis attracts great interest.The development of cost-effective electrocatalysts for water electrolysis is important for enhancing green hydrogen production efficiency.Recently,tungsten pnictides(phosphides and nitrides)have emerged as promising catalysts for water electrolysis,and efficient tungsten pnictide-based catalysts with different nanostructures,compositions,and surface chemical properties have been developed.In this review,recent progress in the design of tungsten pnictide-based electrocatalysts for water electrolysis is comprehensively analyzed.The synthesis of tungsten pnictide-based electrocatalysts are discussed briefly.Then,current achievements in developing efficient tungsten pnictide electrocatalysts for water electrolysis are detailed,and four key catalyst design strategies(i.e.,nanostructure control,heteroatom doping,defect engineering,and heterostructure design)are outlined.The physicochemical properties-catalytic performance relationship of tungsten pnictide-based electrocatalysts is also discussed.At last,perspectives in this field are put forward for guiding further research on the design and application of high-performance tungsten pnictide-based electrocatalysts.