Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-...Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties.展开更多
During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity...During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity cross-section enlarges.This rapid increasement of liquid metal inlet velocity causes serious entrapment of gas and oxide films,and results in various casting defects such as the bifilm defects.These defects detrimentally deteriorate mechanical properties of the castings.To address this issue,an innovative nonlinear pressurization strategy timely matching to the casting structure was proposed.The pressurization rate decreases at sections where the cross-section widens,but it gradually increases as the liquid metal level rises.By this way,the inlet velocity remains below a critical threshold to prevent the entrapment of gas and oxide films.Comparative analyses involving numerical simulations and casting verification illustrate that the nonlinear pressurization technique,compared to the linear pressurization,effectively diminishes both the size and number of bifilm defects.Furthermore,the nonlinear pressurization method enhances the casting yield strength by 10%,tensile strength by 14%,and elongation by 10%.Examination through scanning electron microscopy highlights that the bifilm defects arising from the linear pressurization process result in the reduction of the castings’mechanical properties.These observations underscore the efficacy of nonlinear pressurization in enhancing the quality and reliability of gigantic castings,as exemplified by a 5.4-ton extra-large sized C95800 copper alloy propeller hub with complex structures in the current study.展开更多
Ti foil and Ti/Ni/Ti multiple interlayers were selected for the bonding of tungsten to copper and CuCrZr alloy.Theeffects of processing conditions on the microstructures and shear strength of the joints were investiga...Ti foil and Ti/Ni/Ti multiple interlayers were selected for the bonding of tungsten to copper and CuCrZr alloy.Theeffects of processing conditions on the microstructures and shear strength of the joints were investigated.When Tifoil is used for bonding of tungsten to pure copper but not transformed into liquid solution during the holding time,the strength of the joints is relatively low because of the multiple compound layers with brittleness formed in thebonding zone.The strength of the joints increases significantly if the Ti foil is transformed into liquid solution and ismostly extruded out of the bonding zone.The same phenomena are found in the case when Ti/Ni/Ti multi-interlayersare used for bonding tungsten to CuCrZr alloy.展开更多
In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduce...In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduced for welding.T2 copper and 6063 aluminum thin plates were lap welded by coaxial dual-beam laser welding.The morphology of weld cross section was compared to explore the influence of process parameters on the formation of lap joints.The microstructure characteristics of the weld zone were observed and compared by optical microscope.The results show that the addition of laser beam swing can eliminate the internal pores of the weld.With the increase of the swing width,the weld depth decreases,and the weld width increases first and then decreases.The influence of welding speed on the weld cross section morphology is similar to that of swing width.With the increase of welding speed,the weld width increases first and then decreases,while the weld depth decreases all the time.This is because that the red laser is used as the main heat source to melt the base metals,with the increase of red laser power,the weld depth increases.As an auxiliary laser source,blue laser reduces the total energy consumption,consequently,the effective heat input increases and the spatter is restrained effectively.As a result,the increase of red laser power has an enhancement effect on the weld width and weld depth.When the swing width is 1.2 mm,the red laser power is 550 W,the blue laser power is 500 W,and the welding speed is 35 mm/s,the weld forming is the best.The lap joint of T2 copper and 6063 aluminum alloy thin plate can be connected stably with the hybrid of blue laser.The effect rules of laser beam swing on the weld formation were obtained,which improved the quality of the joints.展开更多
Hot compression test of a novel nickel-free white alloy Cu?12Mn?15Zn?1.5Al?0.3Ti?0.14B?0.1Ce (mass fraction, %) was conducted on a Gleeble?1500 machine in the temperature range of 600?800 °C and the strain rate r...Hot compression test of a novel nickel-free white alloy Cu?12Mn?15Zn?1.5Al?0.3Ti?0.14B?0.1Ce (mass fraction, %) was conducted on a Gleeble?1500 machine in the temperature range of 600?800 °C and the strain rate range of 0.01?10 s?1. The constitutive equation and hot processing map of the alloy were built up according to its hot deformation behavior and hot working characteristics. The deformation activation energy of the alloy is 203.005 kJ/mol. An instability region appears in the hot deformation temperature of 600?700 °C and the strain rate range of 0.32?10 s?1 when the true strain of the alloy is up to 0.7. Under the optimal hot deformation condition of 800 °C and 10 s?1 the prepared specimen has good surface quality and interior structure. The designed nickel-free alloy has very similar white chromaticity with the traditional white copper alloy (Cu?15Ni?24Zn?1.5Pb), and the color difference between them is less than 1.5, which can hardly be distinguished by human eyes.展开更多
Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile ...Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile strength of the joints, and the process parameters were optimized. The optimum process parameters are as follows:beam current of 30 mA, welding speed of 100 mm/min, wire feed rate of 1 m/min and beam offset of-0.3 mm. The microstructures of the optimum joint were studied. The results indicate that the weld is mainly composed of dendriticαphase with little globularεphase, and copper inhomogeneity only occurs at the top of the fusion zone. In addition, a melted region without mixing exists near the weld junction of copper side. This region with a coarser grain size is the weakest section of the joints. It is found that the microhardness of the weld decreases with the increase of the copper content in solid solution. The highest tensile strength of the joint is 276 MPa.展开更多
Microstructure and texture evolution of Cu-0.23%Al2O3 dispersion strengthened copper alloy, deformed at room temperature or cryogenic temperature, were investigated. The main textures in hot-extruded specimen were Bra...Microstructure and texture evolution of Cu-0.23%Al2O3 dispersion strengthened copper alloy, deformed at room temperature or cryogenic temperature, were investigated. The main textures in hot-extruded specimen were Brass {011} 〈211〉 and Cube {100} 〈100〉. Textures of Brass {011} 〈211〉 and Goss {011} 〈100〉 were observed in specimen after deformation at room temperature; while textures of Brass {011} 〈211〉, Goss {011} 〈100〉 and S {123} 〈634〉 were detected after deformation at cryogenic temperature. It is believed that the additional Al2O3 nanoparticles can result in dislocation pinning effect, which can further lead to the suppression of dislocations cross-slip. While in the specimen deformed at cryogenic temperature, both pinning effect and cryogenic temperature are responsible for the formation of Brass, Goss and S textures.展开更多
The microstructure and its effects on the high temperature mechanical behavior of Cu-2.7%Al_2O_3 (volume fraction) dispersion strengthened copper (ADSC) alloy were investigated. The results indicate that fine alum...The microstructure and its effects on the high temperature mechanical behavior of Cu-2.7%Al_2O_3 (volume fraction) dispersion strengthened copper (ADSC) alloy were investigated. The results indicate that fine alumina particles are uniformly distributed in the copper matrix, while a few coarse ones are distributed on the grain boundaries. Tensile tests results show that Hall-Petch mechanism is the main contribution to the yield strength of ADSC alloy at room temperature. Its high temperature strength is attributed to the strong pinning effects of alumina particles on the grain and sub-grain boundaries with dislocations. The ultimate tensile strength can reach 237 MPa and the corresponding yield strength reaches 226 MPa at 700℃. Tensile fracture morphology indicates that the ADSC alloy shows brittleness at elevated temperatures. Creep tests results demonstrate that the steady state creep rates at 400 ℃ are lower than those at 700 ℃. The stress exponents at 400 ℃ and 700℃ are 7 and 5, respectively, and the creep strain rates of the ADSC alloy are controlled by dislocation core diffusion and lattice diffusion.展开更多
China is quite poor in argent resource. Roughly 80% of this industrial argent is imported every year. In order to improve the situation, we took advantage of rare earth (RE) mineral resource and successfully developed...China is quite poor in argent resource. Roughly 80% of this industrial argent is imported every year. In order to improve the situation, we took advantage of rare earth (RE) mineral resource and successfully developed the non-argent Lanthanum-tellurium-copper alloy as a substitute for industry argent-copper. In our research, we were able to successfully apply rare earth lanthanum to copper alloy. The defects as porosity, inclusion, etc. originating from nonvacuum melting processing were controlled. Fine grain was obtained. Meanwhile, the comprehensive properties of the copper alloy, such as strength, conductivity and thermal conductivity were improved. The research results in increasing conductivity and thermal conductivity by 5% and 15%, respectively, while the tensile strength is increased by 6% higher than Ag-Cu alloy. The anti-electric corrosion property is good, and there is no argent-cadmium steam population originating from the electric arc effect. The addition of lanthanum further reduces the content of oxygen and hydrogen. The optimum quantity of the addition of RE lanthanum in the copper alloy is 0.010% - 0.020% .展开更多
The electrodeposition of A1 and A1-Cu binary alloys on to gold substrates from a room temperature ionic liquid electrolyte containing A1C13-EtaNHC1 was studied. The electrochemical behavior of the electrolyte and the ...The electrodeposition of A1 and A1-Cu binary alloys on to gold substrates from a room temperature ionic liquid electrolyte containing A1C13-EtaNHC1 was studied. The electrochemical behavior of the electrolyte and the mechanism of deposition were investigated through cyclic voltammetry (CV), and the properties of deposits obtained were assessed by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD). A1 of 70μm in thickness and an A1-Cu alloy of 30μm in thickness with 8at% copper were deposited from the electrolyte. SEM images of the deposits indicate that the A1 deposit was smooth and uniform, whereas the Al-Cu deposit was nodular. The average crystalline size, as determined by XRD patterns, was found to be (30±5) and (29±5) nm, respectively, for A1 and A1-Cu alloys. Potentiodynamic polarization (Tafel plots) and electrochemical impedance spectroscopic (EIS) measurements showed that Al-Cu alloys are more corrosion resistant than Al.展开更多
Al2O3 dispersion copper alloy powder was prepared by intemal oxidation, and three consolidation methods--high-velocity compaction (HVC), hot pressing (HP), and hot extrusion (HE)--were used to prepare Al2O3 disp...Al2O3 dispersion copper alloy powder was prepared by intemal oxidation, and three consolidation methods--high-velocity compaction (HVC), hot pressing (HP), and hot extrusion (HE)--were used to prepare Al2O3 dispersion-strengthened copper (Cu-Al2O3) alloys. The microstructures and properties of these alloys were investigated and compared. The results show that the alloys prepared by the HP and HE methods exhibited the coarsest and finest grain sizes, respectively. The alloy prepared by the HVC method exhibited the lowest relative density (98.3% vs. 99.5% for HP and 100% for HE), which resulted in the lowest electrical conductivity (81% IACS vs. 86% IACS for HP and 87% IACS for HE). However, this alloy also exhibited the highest hardness (77 HRB vs. 69 HRB for HP and 70 HRB for HE), the highest compressive strength (443 MPa vs. 386 MPa for I/P and 378 MPa for HE), and the best hardness retention among the investigated alloys. The results illustrate that the alloy prepared by the HVC method exhibits high softening temperature and good mechanical properties at high temperatures, which imply long service life when used as spot-welding electrodes.展开更多
Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were...Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vo1%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (〈5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vo1%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Gamett effective medium approximation, and its calculated value was about 3.0× 10-9 m2.K.W-l.展开更多
The laser cladding of Ni1015 alloy on Cu substrate was prepared by a high power continuous wave CO2 laser. Its microstructure was analyzed by optical microscope (OM), scanning electron microscope (SEM), and X-Ray ...The laser cladding of Ni1015 alloy on Cu substrate was prepared by a high power continuous wave CO2 laser. Its microstructure was analyzed by optical microscope (OM), scanning electron microscope (SEM), and X-Ray diffraction (XRD). The average microhardness of the cladding coating was Hv 280, which was almost three times of that of the Cu substrate (Hv 85). OM and SEM observations showed that the obtained coating had a smooth and uniform surface, as well as a metallurgical combination with the Cu substrate without cracks and pores at the interface. With the addition of copper into the nickel-based alloy, the differences of thermal expansion coefficient and melting point between the interlayer and cladding were reduced, which resulted in low stresses during rapid cooling. Moreover, large amount of (Cu, Ni) solid solution formed a metallurgical bonding between the cladding coating and the substrate, which also relaxed the stresses, leading to the reduction of interfacial cracks and pores after laser cladding.展开更多
The effect of strain rate on ultimate strength and fractograph was investigated for tungsten alloy with four different technologies. As the strain rate rises, the ultimate strength increases and morphology of fracture...The effect of strain rate on ultimate strength and fractograph was investigated for tungsten alloy with four different technologies. As the strain rate rises, the ultimate strength increases and morphology of fracture surface gradually transits from detachment of interface between W pellets and matrices to cleavage of W pellets. Meanwhile, low strength tungsten alloy has higher sensitivity to strain rate.展开更多
This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (I2) and a preliminary analysis of welding parameters influencing on the microstructures and...This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (I2) and a preliminary analysis of welding parameters influencing on the microstructures and properties of joint was carried out. The results indicated that the thickness of workpiece played an important role in the welding parameters which could succeed in the friction stir welding of dissimilar metal of copper to aluminum alloy, and the parameters were proved to be a narrow choice. The interfacial region between copper and aluminum in the dissimilar joint was not uniformly mixed, constituted with part of incomplete mixing zone, complete mixing zone, dispersion zone and the most region' s boundary was obvious. Meantime a kind banded structure with inhomogeneous width was formed. The intermetallic compounds generated during friction stir welding in the interfacial region were mainly CugAl4, Al2Cu etc, and their hardness was higher than oihers.展开更多
Carbon nanotubes (CNTs) were coated by tungsten layer using metal organic chemical vapor deposition process with tungsten hexacarbonyl as a precursor. The W-coated CNTs (W-CNTs) were dispersed into Cu powders by m...Carbon nanotubes (CNTs) were coated by tungsten layer using metal organic chemical vapor deposition process with tungsten hexacarbonyl as a precursor. The W-coated CNTs (W-CNTs) were dispersed into Cu powders by magnetic stirring process and then the mixed powders were consolidated by spark plasma sintering to fabricate W-CNTs/Cu composites. The CNTs/Cu composites were fabricated using the similafprocesses. The friction coefficient and mass wear loss of W-CNTs/Cu and CNTs/Cu composites were studied. The results showed that the W-CNT content, interfacial bonding situation, and applied load could influence the friction coefficient and wear loss of W-CNTs/Cu com- posites. When the W-CNT content was 1.0 wt.%, the W-CNTs/Cu composites got the minimum friction coefficient and wear loss, which were decreased by 72.1% and 47.6%, respectively, compared with pure Cu specimen. The friction coefficient and wear loss of W-CNTs/Cu composites were lower than those of CNTs/Cu composites, which was due to that the interracial bonding at (W-CNTs)-Cu interface was better than that at CNTs-Cu interface. The friction coefficient of composites did not vary obviously with increasing applied load, while the wear loss of composites increased significantly with the increase of applied load.展开更多
Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investiga...Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investigated the effects of tool rotational speed and linear speed on the microstructure and mechanical properties of friction stir-welded C71000 copper–nickel and 340 stainless steel alloys using a tungsten carbide tool with a cylindrical pin. The results indicated that a rotational-to-linear speed ratio of 12.5 r/mm did not cause any macro defects, whereas some tunneling defects and longitudinal cracks were found at other ratios that were lower and higher. Furthermore, chromium carbide was formed on the grain boundaries of the 304 stainless steel near the shoulder zone and inside the joint zone, directing carbon and chromium penetration toward the grain boundaries. Tensile strength and elongation percentages were 84% and 65% of the corresponding values in the copper–nickel base metal, respectively.展开更多
With CuMn alloy as interlayer, the transient liquid phase (TLP) diffusion bonding of Cu alloys (CuAlBe) to stainless steel (1Cr18Ni9Ti) was studied. The results show that the bonding pressure, time and temperature and...With CuMn alloy as interlayer, the transient liquid phase (TLP) diffusion bonding of Cu alloys (CuAlBe) to stainless steel (1Cr18Ni9Ti) was studied. The results show that the bonding pressure, time and temperature and the content of Mn in CuMn alloy have great effects on the strength of bonding interface; when they are 1 MPa, 40 min, 1 223 K and 30% respectively, the maximum joint strength of 487 MPa is attained. The fracture occurring at the bonding interface is a plastic one and the effect of Mn has been analyzed.展开更多
WC-Co hard metal was furnace brazed by Ag-Cu-Zn+Ni/Mn filler alloy using a tube furnace under high-purity argon at730°C.The influence of brazing time and gap size of joints was studied.The results revealed the ma...WC-Co hard metal was furnace brazed by Ag-Cu-Zn+Ni/Mn filler alloy using a tube furnace under high-purity argon at730°C.The influence of brazing time and gap size of joints was studied.The results revealed the maximum shear strength of(156±7)MPa for samples with150μm gap size at a holding time15min.The characterization and microstructure of the brazed joints were characterized by SEM,EDS and XRD.The results showed that increasing the time from5to15min could provide a better chance for the liquid interlayer to flow towards the base metal.However,the formation of some metallic phases such as Mn3W3C at brazing time longer than15min resulted in decreased shear strength of the joint.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2021YFB3803101)the National Natural Science Foundation of China(Nos.52022011,51974028,and 52090041)+1 种基金the Xiaomi Young Scholars ProgramChina National Postdoctoral Program for Innovative Talents(No.BX20230042)。
文摘Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties.
基金supported by the National Natural Science Foundation of China(Granted Nos.51827801,52371152)the Foundation of National Key Laboratory of Precision Hot Processing of Metals(Granted No.DCQQ2790100724).
文摘During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity cross-section enlarges.This rapid increasement of liquid metal inlet velocity causes serious entrapment of gas and oxide films,and results in various casting defects such as the bifilm defects.These defects detrimentally deteriorate mechanical properties of the castings.To address this issue,an innovative nonlinear pressurization strategy timely matching to the casting structure was proposed.The pressurization rate decreases at sections where the cross-section widens,but it gradually increases as the liquid metal level rises.By this way,the inlet velocity remains below a critical threshold to prevent the entrapment of gas and oxide films.Comparative analyses involving numerical simulations and casting verification illustrate that the nonlinear pressurization technique,compared to the linear pressurization,effectively diminishes both the size and number of bifilm defects.Furthermore,the nonlinear pressurization method enhances the casting yield strength by 10%,tensile strength by 14%,and elongation by 10%.Examination through scanning electron microscopy highlights that the bifilm defects arising from the linear pressurization process result in the reduction of the castings’mechanical properties.These observations underscore the efficacy of nonlinear pressurization in enhancing the quality and reliability of gigantic castings,as exemplified by a 5.4-ton extra-large sized C95800 copper alloy propeller hub with complex structures in the current study.
文摘Ti foil and Ti/Ni/Ti multiple interlayers were selected for the bonding of tungsten to copper and CuCrZr alloy.Theeffects of processing conditions on the microstructures and shear strength of the joints were investigated.When Tifoil is used for bonding of tungsten to pure copper but not transformed into liquid solution during the holding time,the strength of the joints is relatively low because of the multiple compound layers with brittleness formed in thebonding zone.The strength of the joints increases significantly if the Ti foil is transformed into liquid solution and ismostly extruded out of the bonding zone.The same phenomena are found in the case when Ti/Ni/Ti multi-interlayersare used for bonding tungsten to CuCrZr alloy.
基金supported by Guangdong Science and Technology Plan Project(Grant No.20170902,No.20180902)Yangjiang Science and Technology Plan Project(Grant No.SDZX2020063)+1 种基金Shenzhen Key Projects of Innovation and Entrepreneurship Plan Technology(JSGG20210420091802007)Yunfu 2023 Science and Technology Plan Project(S2023020201).
文摘In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduced for welding.T2 copper and 6063 aluminum thin plates were lap welded by coaxial dual-beam laser welding.The morphology of weld cross section was compared to explore the influence of process parameters on the formation of lap joints.The microstructure characteristics of the weld zone were observed and compared by optical microscope.The results show that the addition of laser beam swing can eliminate the internal pores of the weld.With the increase of the swing width,the weld depth decreases,and the weld width increases first and then decreases.The influence of welding speed on the weld cross section morphology is similar to that of swing width.With the increase of welding speed,the weld width increases first and then decreases,while the weld depth decreases all the time.This is because that the red laser is used as the main heat source to melt the base metals,with the increase of red laser power,the weld depth increases.As an auxiliary laser source,blue laser reduces the total energy consumption,consequently,the effective heat input increases and the spatter is restrained effectively.As a result,the increase of red laser power has an enhancement effect on the weld width and weld depth.When the swing width is 1.2 mm,the red laser power is 550 W,the blue laser power is 500 W,and the welding speed is 35 mm/s,the weld forming is the best.The lap joint of T2 copper and 6063 aluminum alloy thin plate can be connected stably with the hybrid of blue laser.The effect rules of laser beam swing on the weld formation were obtained,which improved the quality of the joints.
基金Project(51271203)supported by the National Natural Science Foundation of ChinaProject(CX2012B037)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China+1 种基金Project(2013zzts017)supported by the Graduate Degree Thesis Innovation Foundation of Central South University,ChinaProject(2012bjjxj015)supported by the Excellent Doctor Degree Thesis Support Foundation of Central South University,China
文摘Hot compression test of a novel nickel-free white alloy Cu?12Mn?15Zn?1.5Al?0.3Ti?0.14B?0.1Ce (mass fraction, %) was conducted on a Gleeble?1500 machine in the temperature range of 600?800 °C and the strain rate range of 0.01?10 s?1. The constitutive equation and hot processing map of the alloy were built up according to its hot deformation behavior and hot working characteristics. The deformation activation energy of the alloy is 203.005 kJ/mol. An instability region appears in the hot deformation temperature of 600?700 °C and the strain rate range of 0.32?10 s?1 when the true strain of the alloy is up to 0.7. Under the optimal hot deformation condition of 800 °C and 10 s?1 the prepared specimen has good surface quality and interior structure. The designed nickel-free alloy has very similar white chromaticity with the traditional white copper alloy (Cu?15Ni?24Zn?1.5Pb), and the color difference between them is less than 1.5, which can hardly be distinguished by human eyes.
基金Project(2010CB731704)supported by the National Basic Research Program of ChinaProject(2011DFR50760)supported by International Science&Technology Cooperation Program of China
文摘Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile strength of the joints, and the process parameters were optimized. The optimum process parameters are as follows:beam current of 30 mA, welding speed of 100 mm/min, wire feed rate of 1 m/min and beam offset of-0.3 mm. The microstructures of the optimum joint were studied. The results indicate that the weld is mainly composed of dendriticαphase with little globularεphase, and copper inhomogeneity only occurs at the top of the fusion zone. In addition, a melted region without mixing exists near the weld junction of copper side. This region with a coarser grain size is the weakest section of the joints. It is found that the microhardness of the weld decreases with the increase of the copper content in solid solution. The highest tensile strength of the joint is 276 MPa.
基金Project(51271203)supported by the National Natural Science Foundation of ChinaProject(YSZN2013CLD6)supported by the Nonferrous Metals Science Foundation of HNG-CSU+1 种基金ChinaProject supported by the Program Between the CSC(China Scholarship Council)and the DAAD(German Academic Exchange Service)
文摘Microstructure and texture evolution of Cu-0.23%Al2O3 dispersion strengthened copper alloy, deformed at room temperature or cryogenic temperature, were investigated. The main textures in hot-extruded specimen were Brass {011} 〈211〉 and Cube {100} 〈100〉. Textures of Brass {011} 〈211〉 and Goss {011} 〈100〉 were observed in specimen after deformation at room temperature; while textures of Brass {011} 〈211〉, Goss {011} 〈100〉 and S {123} 〈634〉 were detected after deformation at cryogenic temperature. It is believed that the additional Al2O3 nanoparticles can result in dislocation pinning effect, which can further lead to the suppression of dislocations cross-slip. While in the specimen deformed at cryogenic temperature, both pinning effect and cryogenic temperature are responsible for the formation of Brass, Goss and S textures.
基金Project(51271203)supported by the National Natural Science Foundation of Chinathe PPP project between the CSC(China Scholarship Council)and the DAAD(German Academic Exchange Service)+2 种基金Project(11JJ2025)supported by Hunan Provincial Natural Science Foundation of ChinaProject(YSZN2013CL06)supported by the Nonferrous Metals Science Foundation of HNG-CSUProject supported by the Aid program for Science Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘The microstructure and its effects on the high temperature mechanical behavior of Cu-2.7%Al_2O_3 (volume fraction) dispersion strengthened copper (ADSC) alloy were investigated. The results indicate that fine alumina particles are uniformly distributed in the copper matrix, while a few coarse ones are distributed on the grain boundaries. Tensile tests results show that Hall-Petch mechanism is the main contribution to the yield strength of ADSC alloy at room temperature. Its high temperature strength is attributed to the strong pinning effects of alumina particles on the grain and sub-grain boundaries with dislocations. The ultimate tensile strength can reach 237 MPa and the corresponding yield strength reaches 226 MPa at 700℃. Tensile fracture morphology indicates that the ADSC alloy shows brittleness at elevated temperatures. Creep tests results demonstrate that the steady state creep rates at 400 ℃ are lower than those at 700 ℃. The stress exponents at 400 ℃ and 700℃ are 7 and 5, respectively, and the creep strain rates of the ADSC alloy are controlled by dislocation core diffusion and lattice diffusion.
基金Project supported by the National Scientific and Technological Achievements Spread Project (2004EC00299)Science and Technology Type Middle and Small Business Technique Invention Fund (04C26225121390)
文摘China is quite poor in argent resource. Roughly 80% of this industrial argent is imported every year. In order to improve the situation, we took advantage of rare earth (RE) mineral resource and successfully developed the non-argent Lanthanum-tellurium-copper alloy as a substitute for industry argent-copper. In our research, we were able to successfully apply rare earth lanthanum to copper alloy. The defects as porosity, inclusion, etc. originating from nonvacuum melting processing were controlled. Fine grain was obtained. Meanwhile, the comprehensive properties of the copper alloy, such as strength, conductivity and thermal conductivity were improved. The research results in increasing conductivity and thermal conductivity by 5% and 15%, respectively, while the tensile strength is increased by 6% higher than Ag-Cu alloy. The anti-electric corrosion property is good, and there is no argent-cadmium steam population originating from the electric arc effect. The addition of lanthanum further reduces the content of oxygen and hydrogen. The optimum quantity of the addition of RE lanthanum in the copper alloy is 0.010% - 0.020% .
基金financial support from ISRO under RESPOND scheme(No.ISRO/RES/3/580/2007-08)
文摘The electrodeposition of A1 and A1-Cu binary alloys on to gold substrates from a room temperature ionic liquid electrolyte containing A1C13-EtaNHC1 was studied. The electrochemical behavior of the electrolyte and the mechanism of deposition were investigated through cyclic voltammetry (CV), and the properties of deposits obtained were assessed by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD). A1 of 70μm in thickness and an A1-Cu alloy of 30μm in thickness with 8at% copper were deposited from the electrolyte. SEM images of the deposits indicate that the A1 deposit was smooth and uniform, whereas the Al-Cu deposit was nodular. The average crystalline size, as determined by XRD patterns, was found to be (30±5) and (29±5) nm, respectively, for A1 and A1-Cu alloys. Potentiodynamic polarization (Tafel plots) and electrochemical impedance spectroscopic (EIS) measurements showed that Al-Cu alloys are more corrosion resistant than Al.
基金financially supported by Guangdong Provincial Industrial High-tech Project (No. 2015A010105020)Guangzhou Science & Technology New Star of Pearl River Project (No. 2012J2200096)+3 种基金the Open Research Fund of State Key Laboratory of Powder Metallurgy of Central South UniversityGuangdong Provincial Innovation Ability Construction Project (No. 2016B070701024)Guangzhou Innovation Platform Construction and Sharing Project (No. 201509010003)Guangdong Provincial Science & Technology Basic Condition Construction Field Project (No. 2014B030301012)
文摘Al2O3 dispersion copper alloy powder was prepared by intemal oxidation, and three consolidation methods--high-velocity compaction (HVC), hot pressing (HP), and hot extrusion (HE)--were used to prepare Al2O3 dispersion-strengthened copper (Cu-Al2O3) alloys. The microstructures and properties of these alloys were investigated and compared. The results show that the alloys prepared by the HP and HE methods exhibited the coarsest and finest grain sizes, respectively. The alloy prepared by the HVC method exhibited the lowest relative density (98.3% vs. 99.5% for HP and 100% for HE), which resulted in the lowest electrical conductivity (81% IACS vs. 86% IACS for HP and 87% IACS for HE). However, this alloy also exhibited the highest hardness (77 HRB vs. 69 HRB for HP and 70 HRB for HE), the highest compressive strength (443 MPa vs. 386 MPa for I/P and 378 MPa for HE), and the best hardness retention among the investigated alloys. The results illustrate that the alloy prepared by the HVC method exhibits high softening temperature and good mechanical properties at high temperatures, which imply long service life when used as spot-welding electrodes.
基金supported by the National High-Tech Research and Development Program of China (No.2009AA03Z116)the National Natural Science Foundation of China (No.50971020)
文摘Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vo1%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (〈5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vo1%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Gamett effective medium approximation, and its calculated value was about 3.0× 10-9 m2.K.W-l.
基金This research was financially supported by the National Natural Science Foundation of China (No.50574020) and Shanghai BaoSteel Group Co.
文摘The laser cladding of Ni1015 alloy on Cu substrate was prepared by a high power continuous wave CO2 laser. Its microstructure was analyzed by optical microscope (OM), scanning electron microscope (SEM), and X-Ray diffraction (XRD). The average microhardness of the cladding coating was Hv 280, which was almost three times of that of the Cu substrate (Hv 85). OM and SEM observations showed that the obtained coating had a smooth and uniform surface, as well as a metallurgical combination with the Cu substrate without cracks and pores at the interface. With the addition of copper into the nickel-based alloy, the differences of thermal expansion coefficient and melting point between the interlayer and cladding were reduced, which resulted in low stresses during rapid cooling. Moreover, large amount of (Cu, Ni) solid solution formed a metallurgical bonding between the cladding coating and the substrate, which also relaxed the stresses, leading to the reduction of interfacial cracks and pores after laser cladding.
文摘The effect of strain rate on ultimate strength and fractograph was investigated for tungsten alloy with four different technologies. As the strain rate rises, the ultimate strength increases and morphology of fracture surface gradually transits from detachment of interface between W pellets and matrices to cleavage of W pellets. Meanwhile, low strength tungsten alloy has higher sensitivity to strain rate.
基金This project is supported by National Natural Science Foundation of China ( NSFC)(10577010)
文摘This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (I2) and a preliminary analysis of welding parameters influencing on the microstructures and properties of joint was carried out. The results indicated that the thickness of workpiece played an important role in the welding parameters which could succeed in the friction stir welding of dissimilar metal of copper to aluminum alloy, and the parameters were proved to be a narrow choice. The interfacial region between copper and aluminum in the dissimilar joint was not uniformly mixed, constituted with part of incomplete mixing zone, complete mixing zone, dispersion zone and the most region' s boundary was obvious. Meantime a kind banded structure with inhomogeneous width was formed. The intermetallic compounds generated during friction stir welding in the interfacial region were mainly CugAl4, Al2Cu etc, and their hardness was higher than oihers.
基金financially supported by the National Natural Science Foundation of China (No.50971020)National HighTech Research and Development Program of China (No.2009AA03Z116)
文摘Carbon nanotubes (CNTs) were coated by tungsten layer using metal organic chemical vapor deposition process with tungsten hexacarbonyl as a precursor. The W-coated CNTs (W-CNTs) were dispersed into Cu powders by magnetic stirring process and then the mixed powders were consolidated by spark plasma sintering to fabricate W-CNTs/Cu composites. The CNTs/Cu composites were fabricated using the similafprocesses. The friction coefficient and mass wear loss of W-CNTs/Cu and CNTs/Cu composites were studied. The results showed that the W-CNT content, interfacial bonding situation, and applied load could influence the friction coefficient and wear loss of W-CNTs/Cu com- posites. When the W-CNT content was 1.0 wt.%, the W-CNTs/Cu composites got the minimum friction coefficient and wear loss, which were decreased by 72.1% and 47.6%, respectively, compared with pure Cu specimen. The friction coefficient and wear loss of W-CNTs/Cu composites were lower than those of CNTs/Cu composites, which was due to that the interracial bonding at (W-CNTs)-Cu interface was better than that at CNTs-Cu interface. The friction coefficient of composites did not vary obviously with increasing applied load, while the wear loss of composites increased significantly with the increase of applied load.
基金the funding support of Babol Noshirvani University of Technology (No. BNUT/370167/97)
文摘Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investigated the effects of tool rotational speed and linear speed on the microstructure and mechanical properties of friction stir-welded C71000 copper–nickel and 340 stainless steel alloys using a tungsten carbide tool with a cylindrical pin. The results indicated that a rotational-to-linear speed ratio of 12.5 r/mm did not cause any macro defects, whereas some tunneling defects and longitudinal cracks were found at other ratios that were lower and higher. Furthermore, chromium carbide was formed on the grain boundaries of the 304 stainless steel near the shoulder zone and inside the joint zone, directing carbon and chromium penetration toward the grain boundaries. Tensile strength and elongation percentages were 84% and 65% of the corresponding values in the copper–nickel base metal, respectively.
文摘With CuMn alloy as interlayer, the transient liquid phase (TLP) diffusion bonding of Cu alloys (CuAlBe) to stainless steel (1Cr18Ni9Ti) was studied. The results show that the bonding pressure, time and temperature and the content of Mn in CuMn alloy have great effects on the strength of bonding interface; when they are 1 MPa, 40 min, 1 223 K and 30% respectively, the maximum joint strength of 487 MPa is attained. The fracture occurring at the bonding interface is a plastic one and the effect of Mn has been analyzed.
文摘WC-Co hard metal was furnace brazed by Ag-Cu-Zn+Ni/Mn filler alloy using a tube furnace under high-purity argon at730°C.The influence of brazing time and gap size of joints was studied.The results revealed the maximum shear strength of(156±7)MPa for samples with150μm gap size at a holding time15min.The characterization and microstructure of the brazed joints were characterized by SEM,EDS and XRD.The results showed that increasing the time from5to15min could provide a better chance for the liquid interlayer to flow towards the base metal.However,the formation of some metallic phases such as Mn3W3C at brazing time longer than15min resulted in decreased shear strength of the joint.