Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and e...Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields.展开更多
Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, w...Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol%BNNTs/Cu and 3vol%CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K,both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of~404 MPa, which is approximately 170%higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27%and 29%higher than those of CNTs/Cu, respectively.This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature.展开更多
Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesi...Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials.展开更多
Element W can effectively improve the density of energetic structural materials. However, W is an inert element and does not combust in air. To change the reaction characteristics of W, 60 at.% Al was introduced into ...Element W can effectively improve the density of energetic structural materials. However, W is an inert element and does not combust in air. To change the reaction characteristics of W, 60 at.% Al was introduced into W through mechanical alloying. XRD analysis shows that after 50 h of ball milling, the diffraction peak of Al completely disappears and W(Al60) super-saturated solid solution powder is obtained. Further observation by HAADF and HRTEM reveals that the W(Al60) super-saturated solid solution powder is a mixture of solid solution and amorphous phase. Based on the good thermal stability of W(Al60) alloy powder below 1000℃, W(Al60)-Al composite was synthesized by hot pressing process.Impact initiation experiments suggest that the W(Al60)-Al composite has excellent reaction characteristics, and multiple types of tungsten oxides are detected in the reaction products, showing that the modified W is combustible in air. Due to the combustion of tungsten, the energy release rate of the W(Al60)-Al composite at speed of 1362 m/s reaches 2.71 kJ/g.展开更多
Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were...Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vo1%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (〈5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vo1%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Gamett effective medium approximation, and its calculated value was about 3.0× 10-9 m2.K.W-l.展开更多
Carbon nanotubes (CNTs) were coated by tungsten layer using metal organic chemical vapor deposition process with tungsten hexacarbonyl as a precursor. The W-coated CNTs (W-CNTs) were dispersed into Cu powders by m...Carbon nanotubes (CNTs) were coated by tungsten layer using metal organic chemical vapor deposition process with tungsten hexacarbonyl as a precursor. The W-coated CNTs (W-CNTs) were dispersed into Cu powders by magnetic stirring process and then the mixed powders were consolidated by spark plasma sintering to fabricate W-CNTs/Cu composites. The CNTs/Cu composites were fabricated using the similafprocesses. The friction coefficient and mass wear loss of W-CNTs/Cu and CNTs/Cu composites were studied. The results showed that the W-CNT content, interfacial bonding situation, and applied load could influence the friction coefficient and wear loss of W-CNTs/Cu com- posites. When the W-CNT content was 1.0 wt.%, the W-CNTs/Cu composites got the minimum friction coefficient and wear loss, which were decreased by 72.1% and 47.6%, respectively, compared with pure Cu specimen. The friction coefficient and wear loss of W-CNTs/Cu composites were lower than those of CNTs/Cu composites, which was due to that the interracial bonding at (W-CNTs)-Cu interface was better than that at CNTs-Cu interface. The friction coefficient of composites did not vary obviously with increasing applied load, while the wear loss of composites increased significantly with the increase of applied load.展开更多
Tungsten nanoparticle-strengthened Cu composites were prepared from nanopowder synthesized by a sol–gel method and in-situ hydrogen reduction.The tungsten particles in the Cu matrix were well-dispersed with an averag...Tungsten nanoparticle-strengthened Cu composites were prepared from nanopowder synthesized by a sol–gel method and in-situ hydrogen reduction.The tungsten particles in the Cu matrix were well-dispersed with an average size of approximately 100–200 nm.The addition of nanosized W particles remarkably improves the mechanical properties,while the electrical conductivity did not substantially decrease.The Cu–W composite with 6 wt%W has the most comprehensive properties with an ultimate strength of 310 MPa,yield strength of 238 MPa,hardness of HV 108 and electrical conductivity of 90%IACS.The enhanced mechanical property and only a small loss of electrical conductivity demonstrate the potential of this new strategy to prepare W nanoparticle-strengthened Cu composites.展开更多
Tungsten was plated on the surface of diamond by using thermal diffusion method.Different process parameters were employed to prepare the composites with tungsten,diamond and copper.The micro morphology of different s...Tungsten was plated on the surface of diamond by using thermal diffusion method.Different process parameters were employed to prepare the composites with tungsten,diamond and copper.The micro morphology of different samples was observed,and the thermal conductivity of samples was measured by laser flash method.The optimal process parameters for preparing diamond/copper composites with high thermal conductivity were investigated.The results indicated that plating tungsten on diamond could modify the interface bonding.When the diamond was plated for 60 min,the coating appeared intact,uniform and flat,and the thermal conductivity of the sample could reach as high as 486 W/(m·K).The integrity and uniformity were more important than thickness for the coating.When the tungsten-plated diamond was further annealed,the metallurgical bonding between the coating and the diamond was enhanced,and the thermal conductivity rose to 559 W/(m·K).展开更多
Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flak...Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear.展开更多
A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and th...A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and then a layer of copper was electrodeposited on it.By repeating the above process,the laminar Cu/SACNT composite which contains dozens or hundreds of layers of copper and SACNT films was obtained.The thickness of a single copper layer was controlled by adjusting the process parameter easily and the thinnest layer is less than 2 μm.The microscopic observation shows that the directional alignment structure of SACNT is retained in the composite perfectly.The mechanical and electrical properties testing results show that the tensile and yield strengths of composites are improved obviously compared with those of pure copper,and the high conductivity is retained.This technology is a potential method to make applicable MMC which characterizes high volume fraction and directional alignment of carbon nanotubes.展开更多
BNi-2/WC composite wear-resisting coating was prepared on carbon steel by the method of induction brazing.The microstructure and phase composition of the composite coating were analyzed,and the bonding strength and we...BNi-2/WC composite wear-resisting coating was prepared on carbon steel by the method of induction brazing.The microstructure and phase composition of the composite coating were analyzed,and the bonding strength and wear-resisting performance of the coating were tested.During the process of induction brazing,the tungsten carbide partially dissolves and reacts with the filler metal alloy to form NiW compound phase,which realizes the metallurgical combination of tungsten carbide and filler metal alloy.The matrix of the filler metal alloy consists of Ni solid solution and Ni_(3)B/Ni_(3)Si eutectic phase,and the metallurgical diffusion reaction occurs between the filler metal alloy and the steel matrix.The mechanical analysis results show that the self-strength of the composite coating reaches 140 MPa and the bonding strength of the filler metal alloy to the steel matrix reaches 360 MPa.The dry sand rubber wheel wear testing machine showed that the coating weight loss was only 0.2824 g,which was only 1/5 of the weight loss of 65 Mn matrix under the same conditions.展开更多
From the experimental data on ceramic/aluminum composite target, the mechanism of tungsten ball impacting a ceramic/aluminum composite target has been studied. By analyzing the transition of energy in the process of i...From the experimental data on ceramic/aluminum composite target, the mechanism of tungsten ball impacting a ceramic/aluminum composite target has been studied. By analyzing the transition of energy in the process of impact, a simple ballistic limit analytical model of tungsten ball impacting a ceramic/aluminum composite target has been proposed; and the result taken from this model is consistent with that of the experiment.展开更多
In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the ...In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the corresponding finite element method(FEM) simulations a modified coupled thermomechanical constitutive model is employed to describe the mechanical properties of metallic glass(MG)matrix, and geometrical models of the WP/MG composite rod are established based on its inner structure. The deformation and failure characteristics of the rod and target materials are analyzed in detail,and the influences of various factors on the ballistic performance of the WP/MG composite long rod are discussed. Related analysis demonstrates that the penetrating performance of the WP/MG rod is similar to that of the tungsten fiber/metallic glass matrix(WF/MG) composite long rod, i.e., a "self-sharpening" behavior also occurs during the penetration process, and correspondingly its penetrating capability is better than that of the tungsten heavy alloy(WHA) rod. However, the mass erosion manner of the WP/MG rod is different and the erosion is relatively severe, thus its penetrating capability is a little lower compared with that of the WF/MG one. Moreover, the impact velocity and the target strength have significant influences on the ballistic performance of the WP/MG composite rod, whereas the effect of initial nose shape is very little.展开更多
In this paper the Expendable Pattern Casting with dry sand Vacuum(EPC-V) process is used to manufacture iron matrix composites with tungsten carbide particle.Microstructures of the composites layers were analyzed.The ...In this paper the Expendable Pattern Casting with dry sand Vacuum(EPC-V) process is used to manufacture iron matrix composites with tungsten carbide particle.Microstructures of the composites layers were analyzed.The abrasive wear resistance of the composites layers were tested and compared with that of high chromium cast iron.The results show that the iron matrix composites with tungsten carbide particle have high hardness.The abrasive wear resistance of composites with tungsten carbide particle is higher than that of high chromium cast iron.The properties of the matrix materials have been improved remarkably.展开更多
The thermal conductivity of diamond/copper composites with bimodal particle sizes was studied. The composites were prepared through pressure infiltration of liquid copper into diamond preforms with a mixture of 40 and...The thermal conductivity of diamond/copper composites with bimodal particle sizes was studied. The composites were prepared through pressure infiltration of liquid copper into diamond preforms with a mixture of 40 and 100 pm-size diamonds. The permeability of the preforms with different coarse-to-fine volume ratios of diamonds was investigated. The thermal conductivity of the diamond/copper composites with bimodal size distribution was compared to the theoretical value derived from an analytical model developed by Chu. It is predicted that the diamond/copper composites could reach a higher thermal conductivity and their surface roughness could be improved by applying bimodal diamond particle sizes.展开更多
An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface ar...An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface are refined in the radial profiles of cone-shaped deformation zone,but the grains in the center maintain the original state and the grain size is non-uniform.A clear boundary presents between the refined area and center area.In contrast,the copper grains in the radial profiles have been significantly refined.In the center area of the copper,the grains are bigger than those at the boundary.On the surface of the deformable body,the grain size is the smallest,but with irregular grain morphology.After the product is entirely extruded,all the copper and aluminum grains are refined with small and uniform morphology.In the center area,the average diameter of aluminum grains is smaller than 5 μm,and the copper grain on the surface is about 10 μm.At the interface,the grain size is very small,with a good combination of copper and aluminum.The thickness of interface is in the range of 10-15 μm.Energy spectrum analysis shows that CuAl3 phase presents at the interface.展开更多
At the present time in china, the binder used in tungsten carbide composite button is mainly cobalt, which is very expensive. In order to solve the problems, a new type of rare earth and iron-rich diamond-enhanced tun...At the present time in china, the binder used in tungsten carbide composite button is mainly cobalt, which is very expensive. In order to solve the problems, a new type of rare earth and iron-rich diamond-enhanced tungsten carbide with high abrasive resistance and high toughness against impact, which realizes to substitute ferrum for cobalt, has been developed. The key problems in making the button are to improve the mechanical properties of matrix and increase the welding strength between the diamond and the matrix. All these problems have been solved effectively by low temperature activation hot-press sintering, doping rare earth lanthanum in matrix and high sintering pressure. The properties of the button have been determined under laboratory conditions. The test results show that its hardness is more than 90 HRA, its abrasive resistance is 39 times more than that of conventional cemented tungsten carbide, and its toughness against impact is more than 200 J. All these data show the button has very good mechanical properties.展开更多
Poly(p-phenylenediamine)/chitosan (PPPDA/Chi) composite was prepared by in situ chemical oxidative polymerization of p-phenylenediamine (PPPDA) into chitosan (Chi) using ammonium persulphate (APS) as an oxidant. PPPDA...Poly(p-phenylenediamine)/chitosan (PPPDA/Chi) composite was prepared by in situ chemical oxidative polymerization of p-phenylenediamine (PPPDA) into chitosan (Chi) using ammonium persulphate (APS) as an oxidant. PPPDA and PPPDA/Chi composite were characterized by FT-IR spectra and SEM before and after copper loading. In batch adsorption method, the maximum removal of copper was experienced when 1 g/L of PPPDA and PPPDA/Chi composite dosages were used at pH 5.0 for PPPDA and 6.0 for PPPDA/Chi composite for 360 min for both sorbents. PPPDA showed adsorption capacity q<sub>e</sub><sup>max</sup> of 650 mg/g whereas its composite achieved q<sub>e</sub><sup>max</sup> of 573 mg/g. The experimental data correlate well with the Freundlich isotherm equation and the pseudo-second order kinetic model. The Cu(II), loaded PPPDA and its composite can be efficiently reused for as many as four cycles. The Cu(II)-loaded sorbents showed high antibacterial efficiency against Gram-positive and Gram-negative bacteria than their unloaded forms.展开更多
In this paper, the graphene-copper nanoparticle composites(GN/Cu NPs) were prepared by in situ chemical reduction in aqueous solution. The influence of pH value and the concentration of PVP on the particle size and st...In this paper, the graphene-copper nanoparticle composites(GN/Cu NPs) were prepared by in situ chemical reduction in aqueous solution. The influence of pH value and the concentration of PVP on the particle size and structure of the GN/Cu NPs as well as the element distribution were analyzed via the scanning electron microscopy(SEM), the transmission electron microscopy(TEM), the X-ray diffraction(XRD), and the energy dispersive spectroscopy(EDS). The tribological properties of the grease with GN/Cu NPs composites have been studied by SRV-IV. It was found that compared to the base grease, the GN/Cu NPs composites could help to reduce the wear loss of the disk by 85.5% and the average friction coefficient by 15.5%. The test results clearly indicated that the addition of the GN/Cu NPs composites significantly enhanced the tribological properties of grease.展开更多
Copper cladding aluminum(CCA)rods with the section dimensions of12mm in diameter and2mm in sheath thickness were fabricated by vertical core-filling continuous casting(VCFC)technology.The kinds and morphology of inter...Copper cladding aluminum(CCA)rods with the section dimensions of12mm in diameter and2mm in sheath thickness were fabricated by vertical core-filling continuous casting(VCFC)technology.The kinds and morphology of interfacial intermetallic compounds(IMCs)were investigated by SEM,XRD and TEM.The results showed that the interfacial structure of Cu/Al was mainly composed of layeredγ1(Cu9Al4),cellularθ(CuAl2),andα(Al)+θ(CuAl2)phases.Moreover,residual acicularε2(Cu3Al2+x)phase was observed at the Cu/Al interface.By comparing the driving force of formation forε2(Cu3Al2+x)andγ1(Cu9Al4)phases,the conclusion was drawn that theε2(Cu3Al2+x)formed firstly at the Cu/Al interface.In addition,the interfacial formation mechanism of copper cladding aluminum composites was revealed completely.展开更多
基金supported by National Natural Science Foundation of China(No.51971101)Science and Technology Development Program of Jilin Province,China(20230201146G X)Exploration Foundation of State Key Laboratory of Automotive Simulation and Control(asclzytsxm-202015)。
文摘Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields.
基金financially supported by the National Natural Science Foundation of China (No.52171144)。
文摘Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol%BNNTs/Cu and 3vol%CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K,both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of~404 MPa, which is approximately 170%higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27%and 29%higher than those of CNTs/Cu, respectively.This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature.
基金the financial support by Postgraduate Research & Practice Innovation Program from Jiangsu Science and Technology Department under Grant number KYCX19_0320。
文摘Copper azide(CA), as a primary explosive with high energy density, has not been practically used so far because of its high electrostatic sensitivity. The Cu2O@HKUST-1 core-shell structure hybrid material was synthesized by the “bottle around ship” methodology in this research by regulating the dissolution rate of Cu2O and the generation rate of metal-organic framework(MOF) materials. Cu2O@HKUST-1 was carbonized to form a Cu O@porous carbon(CuO@PC) composite material. CuO@PC was synthesized into a copper azide(CA) @PC composite energetic material through a gas-solid phase in-situ azidation reaction.CA is encapsulated in PC framework, which acts as a nanoscale Faraday cage, and its excellent electrical conductivity prevents electrostatic charges from accumulating on the energetic material’s surface. The CA@PC composite energetic material has a CA content of 89.6%, and its electrostatic safety is nearly 30times that of pure CA(1.47 mJ compared to 0.05 mJ). CA@PC delivers an outstanding balance of safety and energy density compared to similar materials.
基金supported by the National Natural Science Foundation of China, [Award number: 11972372] and [Award number: U20A20231]。
文摘Element W can effectively improve the density of energetic structural materials. However, W is an inert element and does not combust in air. To change the reaction characteristics of W, 60 at.% Al was introduced into W through mechanical alloying. XRD analysis shows that after 50 h of ball milling, the diffraction peak of Al completely disappears and W(Al60) super-saturated solid solution powder is obtained. Further observation by HAADF and HRTEM reveals that the W(Al60) super-saturated solid solution powder is a mixture of solid solution and amorphous phase. Based on the good thermal stability of W(Al60) alloy powder below 1000℃, W(Al60)-Al composite was synthesized by hot pressing process.Impact initiation experiments suggest that the W(Al60)-Al composite has excellent reaction characteristics, and multiple types of tungsten oxides are detected in the reaction products, showing that the modified W is combustible in air. Due to the combustion of tungsten, the energy release rate of the W(Al60)-Al composite at speed of 1362 m/s reaches 2.71 kJ/g.
基金supported by the National High-Tech Research and Development Program of China (No.2009AA03Z116)the National Natural Science Foundation of China (No.50971020)
文摘Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vo1%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (〈5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vo1%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Gamett effective medium approximation, and its calculated value was about 3.0× 10-9 m2.K.W-l.
基金financially supported by the National Natural Science Foundation of China (No.50971020)National HighTech Research and Development Program of China (No.2009AA03Z116)
文摘Carbon nanotubes (CNTs) were coated by tungsten layer using metal organic chemical vapor deposition process with tungsten hexacarbonyl as a precursor. The W-coated CNTs (W-CNTs) were dispersed into Cu powders by magnetic stirring process and then the mixed powders were consolidated by spark plasma sintering to fabricate W-CNTs/Cu composites. The CNTs/Cu composites were fabricated using the similafprocesses. The friction coefficient and mass wear loss of W-CNTs/Cu and CNTs/Cu composites were studied. The results showed that the W-CNT content, interfacial bonding situation, and applied load could influence the friction coefficient and wear loss of W-CNTs/Cu com- posites. When the W-CNT content was 1.0 wt.%, the W-CNTs/Cu composites got the minimum friction coefficient and wear loss, which were decreased by 72.1% and 47.6%, respectively, compared with pure Cu specimen. The friction coefficient and wear loss of W-CNTs/Cu composites were lower than those of CNTs/Cu composites, which was due to that the interracial bonding at (W-CNTs)-Cu interface was better than that at CNTs-Cu interface. The friction coefficient of composites did not vary obviously with increasing applied load, while the wear loss of composites increased significantly with the increase of applied load.
基金supported by the Fundamental Research Funds for the Central Universities (No. FRF-TP-18-029A2)State Key Lab of Advanced Metals and Materials of China (No. 2019-Z10)
文摘Tungsten nanoparticle-strengthened Cu composites were prepared from nanopowder synthesized by a sol–gel method and in-situ hydrogen reduction.The tungsten particles in the Cu matrix were well-dispersed with an average size of approximately 100–200 nm.The addition of nanosized W particles remarkably improves the mechanical properties,while the electrical conductivity did not substantially decrease.The Cu–W composite with 6 wt%W has the most comprehensive properties with an ultimate strength of 310 MPa,yield strength of 238 MPa,hardness of HV 108 and electrical conductivity of 90%IACS.The enhanced mechanical property and only a small loss of electrical conductivity demonstrate the potential of this new strategy to prepare W nanoparticle-strengthened Cu composites.
基金supported by the National Natural Science Foundation of China(No.11802125)。
文摘Tungsten was plated on the surface of diamond by using thermal diffusion method.Different process parameters were employed to prepare the composites with tungsten,diamond and copper.The micro morphology of different samples was observed,and the thermal conductivity of samples was measured by laser flash method.The optimal process parameters for preparing diamond/copper composites with high thermal conductivity were investigated.The results indicated that plating tungsten on diamond could modify the interface bonding.When the diamond was plated for 60 min,the coating appeared intact,uniform and flat,and the thermal conductivity of the sample could reach as high as 486 W/(m·K).The integrity and uniformity were more important than thickness for the coating.When the tungsten-plated diamond was further annealed,the metallurgical bonding between the coating and the diamond was enhanced,and the thermal conductivity rose to 559 W/(m·K).
基金Projects(51772081,51837009,51971091)supported by the National Natural Science Foundation of ChinaProject(HFZL2018CXY003-4)supported by the Industry-University-Research Cooperation of AECC,ChinaProject(kq1902046)supported by the Major Science and Technology Projects of Changsha City,China。
文摘Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear.
基金Project(20111080980)supported by the Initiative Scientific Research Program,Tsinghua University,China
文摘A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and then a layer of copper was electrodeposited on it.By repeating the above process,the laminar Cu/SACNT composite which contains dozens or hundreds of layers of copper and SACNT films was obtained.The thickness of a single copper layer was controlled by adjusting the process parameter easily and the thinnest layer is less than 2 μm.The microscopic observation shows that the directional alignment structure of SACNT is retained in the composite perfectly.The mechanical and electrical properties testing results show that the tensile and yield strengths of composites are improved obviously compared with those of pure copper,and the high conductivity is retained.This technology is a potential method to make applicable MMC which characterizes high volume fraction and directional alignment of carbon nanotubes.
基金supported by the National Natural Science Foundation of China(Grant No.U2004186).
文摘BNi-2/WC composite wear-resisting coating was prepared on carbon steel by the method of induction brazing.The microstructure and phase composition of the composite coating were analyzed,and the bonding strength and wear-resisting performance of the coating were tested.During the process of induction brazing,the tungsten carbide partially dissolves and reacts with the filler metal alloy to form NiW compound phase,which realizes the metallurgical combination of tungsten carbide and filler metal alloy.The matrix of the filler metal alloy consists of Ni solid solution and Ni_(3)B/Ni_(3)Si eutectic phase,and the metallurgical diffusion reaction occurs between the filler metal alloy and the steel matrix.The mechanical analysis results show that the self-strength of the composite coating reaches 140 MPa and the bonding strength of the filler metal alloy to the steel matrix reaches 360 MPa.The dry sand rubber wheel wear testing machine showed that the coating weight loss was only 0.2824 g,which was only 1/5 of the weight loss of 65 Mn matrix under the same conditions.
文摘From the experimental data on ceramic/aluminum composite target, the mechanism of tungsten ball impacting a ceramic/aluminum composite target has been studied. By analyzing the transition of energy in the process of impact, a simple ballistic limit analytical model of tungsten ball impacting a ceramic/aluminum composite target has been proposed; and the result taken from this model is consistent with that of the experiment.
基金supported by the Science and Technology Development Fund (2015B0201025)the key subject "Computational Solid Mechanics" of China Academy of Engineering Physics+1 种基金the National Outstanding Young Scientists Foundation of China (11225213)the National Natural Science Foundation of China (11521062,11602258)
文摘In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the corresponding finite element method(FEM) simulations a modified coupled thermomechanical constitutive model is employed to describe the mechanical properties of metallic glass(MG)matrix, and geometrical models of the WP/MG composite rod are established based on its inner structure. The deformation and failure characteristics of the rod and target materials are analyzed in detail,and the influences of various factors on the ballistic performance of the WP/MG composite long rod are discussed. Related analysis demonstrates that the penetrating performance of the WP/MG rod is similar to that of the tungsten fiber/metallic glass matrix(WF/MG) composite long rod, i.e., a "self-sharpening" behavior also occurs during the penetration process, and correspondingly its penetrating capability is better than that of the tungsten heavy alloy(WHA) rod. However, the mass erosion manner of the WP/MG rod is different and the erosion is relatively severe, thus its penetrating capability is a little lower compared with that of the WF/MG one. Moreover, the impact velocity and the target strength have significant influences on the ballistic performance of the WP/MG composite rod, whereas the effect of initial nose shape is very little.
文摘In this paper the Expendable Pattern Casting with dry sand Vacuum(EPC-V) process is used to manufacture iron matrix composites with tungsten carbide particle.Microstructures of the composites layers were analyzed.The abrasive wear resistance of the composites layers were tested and compared with that of high chromium cast iron.The results show that the iron matrix composites with tungsten carbide particle have high hardness.The abrasive wear resistance of composites with tungsten carbide particle is higher than that of high chromium cast iron.The properties of the matrix materials have been improved remarkably.
基金supported by the National Natural Science Foundation of China (No. 50971020)the National High-Tech Research and Development Program of China (No. 2008AA03Z505)
文摘The thermal conductivity of diamond/copper composites with bimodal particle sizes was studied. The composites were prepared through pressure infiltration of liquid copper into diamond preforms with a mixture of 40 and 100 pm-size diamonds. The permeability of the preforms with different coarse-to-fine volume ratios of diamonds was investigated. The thermal conductivity of the diamond/copper composites with bimodal size distribution was compared to the theoretical value derived from an analytical model developed by Chu. It is predicted that the diamond/copper composites could reach a higher thermal conductivity and their surface roughness could be improved by applying bimodal diamond particle sizes.
基金Project(60806006) supported by the National Natural Science Foundation of China
文摘An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface are refined in the radial profiles of cone-shaped deformation zone,but the grains in the center maintain the original state and the grain size is non-uniform.A clear boundary presents between the refined area and center area.In contrast,the copper grains in the radial profiles have been significantly refined.In the center area of the copper,the grains are bigger than those at the boundary.On the surface of the deformable body,the grain size is the smallest,but with irregular grain morphology.After the product is entirely extruded,all the copper and aluminum grains are refined with small and uniform morphology.In the center area,the average diameter of aluminum grains is smaller than 5 μm,and the copper grain on the surface is about 10 μm.At the interface,the grain size is very small,with a good combination of copper and aluminum.The thickness of interface is in the range of 10-15 μm.Energy spectrum analysis shows that CuAl3 phase presents at the interface.
文摘At the present time in china, the binder used in tungsten carbide composite button is mainly cobalt, which is very expensive. In order to solve the problems, a new type of rare earth and iron-rich diamond-enhanced tungsten carbide with high abrasive resistance and high toughness against impact, which realizes to substitute ferrum for cobalt, has been developed. The key problems in making the button are to improve the mechanical properties of matrix and increase the welding strength between the diamond and the matrix. All these problems have been solved effectively by low temperature activation hot-press sintering, doping rare earth lanthanum in matrix and high sintering pressure. The properties of the button have been determined under laboratory conditions. The test results show that its hardness is more than 90 HRA, its abrasive resistance is 39 times more than that of conventional cemented tungsten carbide, and its toughness against impact is more than 200 J. All these data show the button has very good mechanical properties.
文摘Poly(p-phenylenediamine)/chitosan (PPPDA/Chi) composite was prepared by in situ chemical oxidative polymerization of p-phenylenediamine (PPPDA) into chitosan (Chi) using ammonium persulphate (APS) as an oxidant. PPPDA and PPPDA/Chi composite were characterized by FT-IR spectra and SEM before and after copper loading. In batch adsorption method, the maximum removal of copper was experienced when 1 g/L of PPPDA and PPPDA/Chi composite dosages were used at pH 5.0 for PPPDA and 6.0 for PPPDA/Chi composite for 360 min for both sorbents. PPPDA showed adsorption capacity q<sub>e</sub><sup>max</sup> of 650 mg/g whereas its composite achieved q<sub>e</sub><sup>max</sup> of 573 mg/g. The experimental data correlate well with the Freundlich isotherm equation and the pseudo-second order kinetic model. The Cu(II), loaded PPPDA and its composite can be efficiently reused for as many as four cycles. The Cu(II)-loaded sorbents showed high antibacterial efficiency against Gram-positive and Gram-negative bacteria than their unloaded forms.
基金financially supported by the program of Chongqing Postgraduate Research and Innovation Project (CYB16130)the Chongqing Science and Technology Nova Plan (KJXX2017023)
文摘In this paper, the graphene-copper nanoparticle composites(GN/Cu NPs) were prepared by in situ chemical reduction in aqueous solution. The influence of pH value and the concentration of PVP on the particle size and structure of the GN/Cu NPs as well as the element distribution were analyzed via the scanning electron microscopy(SEM), the transmission electron microscopy(TEM), the X-ray diffraction(XRD), and the energy dispersive spectroscopy(EDS). The tribological properties of the grease with GN/Cu NPs composites have been studied by SRV-IV. It was found that compared to the base grease, the GN/Cu NPs composites could help to reduce the wear loss of the disk by 85.5% and the average friction coefficient by 15.5%. The test results clearly indicated that the addition of the GN/Cu NPs composites significantly enhanced the tribological properties of grease.
基金Project(51274038)supported by the National Natural Science Foundation of China
文摘Copper cladding aluminum(CCA)rods with the section dimensions of12mm in diameter and2mm in sheath thickness were fabricated by vertical core-filling continuous casting(VCFC)technology.The kinds and morphology of interfacial intermetallic compounds(IMCs)were investigated by SEM,XRD and TEM.The results showed that the interfacial structure of Cu/Al was mainly composed of layeredγ1(Cu9Al4),cellularθ(CuAl2),andα(Al)+θ(CuAl2)phases.Moreover,residual acicularε2(Cu3Al2+x)phase was observed at the Cu/Al interface.By comparing the driving force of formation forε2(Cu3Al2+x)andγ1(Cu9Al4)phases,the conclusion was drawn that theε2(Cu3Al2+x)formed firstly at the Cu/Al interface.In addition,the interfacial formation mechanism of copper cladding aluminum composites was revealed completely.