Mechanical properties and tribological behavior of a novel cast heat resisting copper based alloy are investigated. The corresponding properties of a commercial aluminum bronze C95500 (ASTM B30) are compared with the ...Mechanical properties and tribological behavior of a novel cast heat resisting copper based alloy are investigated. The corresponding properties of a commercial aluminum bronze C95500 (ASTM B30) are compared with the alloy. The results show that the alloy possesses better mechanical properties and tribological behaviors than that of C95500 at elevated temperature. The tensile strength, elongation and hardness at 500℃ are 470MPa, 2.5% and HB220, respectively. The wear rate of the developed alloy at ambient and elevated temperature is about one sixth and one fortieth of that of C95500, respectively. The alloy is very suitable for ma nufacturing heat resisting and wear resisting parts. Major strengthening mechanisms for the alloy are solution strengthening and the second phase strengthening.展开更多
Effects of nickel component,thiourea,glue and chloride ions and their interactions on the passivation of copper–nickel based alloy scrap anodes were investigated by combining conventional electrochemical techniques.R...Effects of nickel component,thiourea,glue and chloride ions and their interactions on the passivation of copper–nickel based alloy scrap anodes were investigated by combining conventional electrochemical techniques.Results obtained from chronopotentiometry and linear voltammetry curves showed that the Ni component made electrochemical stability of the anode strong and difficult to be corroded,caused by the adsorption of generated Cu2O,NiO or copper powder to the anode surface.The Ni2+reducing Cu2+to Cu+or copper powder aggravated the anode passivation.In a certain range of the glue concentration≤8×10–6 or thiourea concentration≤4×10–6,the increase of glue or thiourea concentration increases the anode passivation time.Over this range,glue and thiourea played an adverse effect.The increase of chloride ions concentration led to the increase in passivation time.展开更多
The laser cladding of Ni1015 alloy on Cu substrate was prepared by a high power continuous wave CO2 laser. Its microstructure was analyzed by optical microscope (OM), scanning electron microscope (SEM), and X-Ray ...The laser cladding of Ni1015 alloy on Cu substrate was prepared by a high power continuous wave CO2 laser. Its microstructure was analyzed by optical microscope (OM), scanning electron microscope (SEM), and X-Ray diffraction (XRD). The average microhardness of the cladding coating was Hv 280, which was almost three times of that of the Cu substrate (Hv 85). OM and SEM observations showed that the obtained coating had a smooth and uniform surface, as well as a metallurgical combination with the Cu substrate without cracks and pores at the interface. With the addition of copper into the nickel-based alloy, the differences of thermal expansion coefficient and melting point between the interlayer and cladding were reduced, which resulted in low stresses during rapid cooling. Moreover, large amount of (Cu, Ni) solid solution formed a metallurgical bonding between the cladding coating and the substrate, which also relaxed the stresses, leading to the reduction of interfacial cracks and pores after laser cladding.展开更多
A calculation formula of ln γ i 0 for solute element i in liquid alloys was derived by use of free volume theory and Miedema formation enthalpy model. The values of ln γ i 0 of solute elements in liqui...A calculation formula of ln γ i 0 for solute element i in liquid alloys was derived by use of free volume theory and Miedema formation enthalpy model. The values of ln γ i 0 of solute elements in liquid copper at 1273 K were obtained. The results obtained show that the coincidence rate of sign (positive or negative) was 90% for the calculated and experimental values, which were basically in the same magnitude.展开更多
The tarnishing test in the presence of hydrogen sulfide(H2S) vapors has been used to investigate the tarnish resistance capability of copper-based alloys coated with Si02-like films by means of plasma-enhanced chemi...The tarnishing test in the presence of hydrogen sulfide(H2S) vapors has been used to investigate the tarnish resistance capability of copper-based alloys coated with Si02-like films by means of plasma-enhanced chemical vapor deposition(PECVD) fed with a tetraethoxysilane/oxygen mixture.The chemical and morphological properties of the films have been characterized by using infrared absorption spectroscopy(IR) and scanning electron microscopy(SEM)with energy disperse spectroscopy(EDS).The corrosion products of the samples after the tarnishing test have been identified by X-ray diffraction analysis(XRD).It has been found that SiO2-like films formed via PECVD with a high O2 flow rate could protect copper-based alloys from H2S vapor tarnishing.The alloys coated at the O2 flow rate of 20 sccm remain uncorroded after 54days of H2S vapor tarnish testing.The corrosion products for the alloys deposited at a low O2flow rate after 54 days of tarnish testing are mainly composed of brochantite.展开更多
The effect of Al, Zn, Sn, Mn, Si and Ni on the color characteristics of binary copper-base alloys has been researched systematically and quantitatively. The results show that all alloying elements decrease the red con...The effect of Al, Zn, Sn, Mn, Si and Ni on the color characteristics of binary copper-base alloys has been researched systematically and quantitatively. The results show that all alloying elements decrease the red content of an alloy at different levels but have different effects on the yellow color. Al and Zn enhance the yellow content of an alloy, whereas Sn, Mn, Si and Ni decrease the yellow content. When the alloys with different karat gold colors are imitated, Al and Zn are the most important color mixing elements and Sn, Mn, Si and Ni can be used as auxiliary.展开更多
Copper base alloy was overlaid onto 35CrMnSiA steel plate by tungsten inert gas (TIG) welding method. The heat transfer process was simulated, the microstructures of the copper base overlay were analyzed by scanning...Copper base alloy was overlaid onto 35CrMnSiA steel plate by tungsten inert gas (TIG) welding method. The heat transfer process was simulated, the microstructures of the copper base overlay were analyzed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), and the friction and abrasion properties of the overlay were measured. The results show that the Fe content increases in the overlay with increasing the welding current. And with the increase of Fe content in the overlay, the friction coefficient increases and the wear mechanism changes from oxidation wear to abrasive wear and plough wear, which is related to the size and quantity of Fe grains in the overlay. While with the increase of Fe content in the overlay, the protection of oxidation layer against the oxidation wear on the melted metal decreases.展开更多
铜及其合金具有高导电性、高导热性、优良的力学性能和耐腐蚀性能,是应用广泛的工业材料之一,也是全世界众多机构及学者研究的主要对象之一。Web of Science(WoS)Core Collection数据库2023年发表并收录铜及铜合金领域的论文近8000篇,...铜及其合金具有高导电性、高导热性、优良的力学性能和耐腐蚀性能,是应用广泛的工业材料之一,也是全世界众多机构及学者研究的主要对象之一。Web of Science(WoS)Core Collection数据库2023年发表并收录铜及铜合金领域的论文近8000篇,文献计量学分析表明,铜及铜合金研究的传统方向依然受到很大关注,如铜合金的微观组织、物理化学性能、腐蚀性能等,而铜基功能材料更是当前铜合金研究的热点。中国科学院(>300篇论文)、中南大学、俄罗斯科学院、中国科学院大学、沙特王国大学、北京科技大学(>100篇论文)、中国科学技术大学、昆明理工大学、上海交通大学、哈尔滨工业大学等机构在铜合金研究与开发方面做出了显著贡献。本综述结合统计数据对2023年铜及铜合金材料的研究现状进行概述,介绍了铜冶炼和铜材料制备的基本方法,然后从5方面论述了铜材料的应用:1)铜合金结构材料;2)铜基催化材料;3)铜基电子材料;4)铜基再生材料;5)铜基储能材料。最后,对铜及铜合金材料的未来发展方向进行展望,并提出未来研究方向建议。展开更多
This work concerns the structural evolution of Cu70Nb20Al10(at%) alloy processed by mechanical alloying using a planetary ball mill in air atmosphere for different times(4 to 200 h). The morphological, structural, mic...This work concerns the structural evolution of Cu70Nb20Al10(at%) alloy processed by mechanical alloying using a planetary ball mill in air atmosphere for different times(4 to 200 h). The morphological, structural, microstructural, and thermal behaviors of the alloy were investigated by scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and differential scanning calorimetry. X-ray diffraction patterns were examined using the Rietveld refinement technique with the help of the MAUD software. A disordered FCC-Cu(Nb,Al) solid solution was formed after 8 h of milling. The crystallite size, microstrain, and lattice parameter were determined by the Rietveld method. With increasing milling time, the crystallite size of the final product-ternary-phase FCC-Cu(Nb,Al)-is refined to the nanometer scale, reaching 12 nm after 200 h. This crystallographic structure combines good mechanical strength and good ductility. An increase in microstrain and partial oxidation were also observed with increasing milling time.展开更多
Cu-23 at.%Zn-11 at.% Al alloy has been studied by positron annihilation technique. It is shown that the defects in the alloy induced by quenching from the temperature above α-transformation are basically monovacancie...Cu-23 at.%Zn-11 at.% Al alloy has been studied by positron annihilation technique. It is shown that the defects in the alloy induced by quenching from the temperature above α-transformation are basically monovacancies, instead of other forms of defects.展开更多
The mixture of 90W 7Ni 3Fe(mass fraction, %) powders was milled in a planetary ball mill. Its structure changed during milling, the surface characteristics and thermal stability of the milled powders were studied with...The mixture of 90W 7Ni 3Fe(mass fraction, %) powders was milled in a planetary ball mill. Its structure changed during milling, the surface characteristics and thermal stability of the milled powders were studied with X ray diffraction(XRD), Brunaure Emmett Teller (BET) nitrogen adsorption technique and differential thermal analysis(DTA). The results show that high energy ball milling leads to the formation of composite powders with amorphous binder phase and supersaturated W(Ni, Fe) nano crystalline grains in which great lattice distortion exists. The crystallization temperature of the amorphous binder phase during heating decreases with milling time. The specific surface area and the pore size of the powder mixtures decreases with milling time due to agglomeration and welding between particles.展开更多
Fe-based coatings reinforced by spherical WC particles were produced on the 304 stainless steel by plasma transferred arc(PTA) to enhance the surface wear properties. Three different Fe/WC composite powder mixtures co...Fe-based coatings reinforced by spherical WC particles were produced on the 304 stainless steel by plasma transferred arc(PTA) to enhance the surface wear properties. Three different Fe/WC composite powder mixtures containing 0 wt%, 30 wt%, and 60 wt% of WC were investigated. The microstructure and phase composition of the Fe/WC composite PTA coatings were evaluated systemically by using scanning electron microscope(SEM) and X-ray diffraction(XRD). The wear properties of the three fabricated PTA coatings were investigated on a BRUKER UMT TriboLab. The morphologies of the worn tracks and wear debris were characterized by using SEM and 3 D non-contract profiler. The experimental results reveal that the microhardness on the cross-section and the wear resistance of the fabricated coatings increase dramatically with the increasing adding WC contents. The coating containing 60 wt% of WC possesses excellent wear resistance validated by the lower coefficients of friction(COF), narrower and shallower wear tracks and smaller wear rate. In the pure Fe-based coating, the main wear mechanism is the combination of adhesion and oxidative wear. Adhesive and two-body abrasive wear are predominated in the coating containing 30 wt% of WC, whereas threebody abrasion wear mechanism is predominated in the coating containing 60 wt% of WC.展开更多
Nano-crystalline pre-alloyed powders of W-Ni-Fe were fabricated by high energy ball milling mechanical alloying (MA) technique. The change of appearances and the crystallite sizes of powders before and after high ener...Nano-crystalline pre-alloyed powders of W-Ni-Fe were fabricated by high energy ball milling mechanical alloying (MA) technique. The change of appearances and the crystallite sizes of powders before and after high energy ball milling were investigated by XRD, TOPAS P software, SEM and EDS. The results show that the nano-crystalline pre-alloyed powders can be fabricated by 5 h high energy ball milling. During the MA process, the diffusion of W, Ni and Fe happens in the process of repeated welding and fracturing. As a result, nano-crystalline supersaturated solid solutions are formed. The crystallite sizes won't be refined after 10 h ball milling. The crystallite sizes of different compositions are almost the same under the same MA condition. Due to the toughening mechanism of rare earth element, the powders of 90W-4Ni-2Fe-3.8Mo-0.2RE alloy are seriously agglomerated after ball milling compared with the other alloys. It can be concluded that the optimal sintering temperature of 90W-4Ni-2Fe-3.8Mo-0.2RE pre-alloyed powders after 15 h mechanical alloying is 1 300-1 350 ℃.展开更多
文摘Mechanical properties and tribological behavior of a novel cast heat resisting copper based alloy are investigated. The corresponding properties of a commercial aluminum bronze C95500 (ASTM B30) are compared with the alloy. The results show that the alloy possesses better mechanical properties and tribological behaviors than that of C95500 at elevated temperature. The tensile strength, elongation and hardness at 500℃ are 470MPa, 2.5% and HB220, respectively. The wear rate of the developed alloy at ambient and elevated temperature is about one sixth and one fortieth of that of C95500, respectively. The alloy is very suitable for ma nufacturing heat resisting and wear resisting parts. Major strengthening mechanisms for the alloy are solution strengthening and the second phase strengthening.
基金Project(51574135)supported by the National Natural Science Foundation of ChinaProject(KKPT201563022)supported by the Collaborative Innovation Center of Kunming University of Science and Technology,China
文摘Effects of nickel component,thiourea,glue and chloride ions and their interactions on the passivation of copper–nickel based alloy scrap anodes were investigated by combining conventional electrochemical techniques.Results obtained from chronopotentiometry and linear voltammetry curves showed that the Ni component made electrochemical stability of the anode strong and difficult to be corroded,caused by the adsorption of generated Cu2O,NiO or copper powder to the anode surface.The Ni2+reducing Cu2+to Cu+or copper powder aggravated the anode passivation.In a certain range of the glue concentration≤8×10–6 or thiourea concentration≤4×10–6,the increase of glue or thiourea concentration increases the anode passivation time.Over this range,glue and thiourea played an adverse effect.The increase of chloride ions concentration led to the increase in passivation time.
基金This research was financially supported by the National Natural Science Foundation of China (No.50574020) and Shanghai BaoSteel Group Co.
文摘The laser cladding of Ni1015 alloy on Cu substrate was prepared by a high power continuous wave CO2 laser. Its microstructure was analyzed by optical microscope (OM), scanning electron microscope (SEM), and X-Ray diffraction (XRD). The average microhardness of the cladding coating was Hv 280, which was almost three times of that of the Cu substrate (Hv 85). OM and SEM observations showed that the obtained coating had a smooth and uniform surface, as well as a metallurgical combination with the Cu substrate without cracks and pores at the interface. With the addition of copper into the nickel-based alloy, the differences of thermal expansion coefficient and melting point between the interlayer and cladding were reduced, which resulted in low stresses during rapid cooling. Moreover, large amount of (Cu, Ni) solid solution formed a metallurgical bonding between the cladding coating and the substrate, which also relaxed the stresses, leading to the reduction of interfacial cracks and pores after laser cladding.
文摘A calculation formula of ln γ i 0 for solute element i in liquid alloys was derived by use of free volume theory and Miedema formation enthalpy model. The values of ln γ i 0 of solute elements in liquid copper at 1273 K were obtained. The results obtained show that the coincidence rate of sign (positive or negative) was 90% for the calculated and experimental values, which were basically in the same magnitude.
基金supported by the Special Fund for Talent of Wuhan Institute of Technology,China(No.237127)the"Fellowship for Junior Researchers"from Politecnico di Torino and Regione Piemonte,Italy
文摘The tarnishing test in the presence of hydrogen sulfide(H2S) vapors has been used to investigate the tarnish resistance capability of copper-based alloys coated with Si02-like films by means of plasma-enhanced chemical vapor deposition(PECVD) fed with a tetraethoxysilane/oxygen mixture.The chemical and morphological properties of the films have been characterized by using infrared absorption spectroscopy(IR) and scanning electron microscopy(SEM)with energy disperse spectroscopy(EDS).The corrosion products of the samples after the tarnishing test have been identified by X-ray diffraction analysis(XRD).It has been found that SiO2-like films formed via PECVD with a high O2 flow rate could protect copper-based alloys from H2S vapor tarnishing.The alloys coated at the O2 flow rate of 20 sccm remain uncorroded after 54days of H2S vapor tarnish testing.The corrosion products for the alloys deposited at a low O2flow rate after 54 days of tarnish testing are mainly composed of brochantite.
基金Financially supported by China National Gold Management Bureau for basic theory research
文摘The effect of Al, Zn, Sn, Mn, Si and Ni on the color characteristics of binary copper-base alloys has been researched systematically and quantitatively. The results show that all alloying elements decrease the red content of an alloy at different levels but have different effects on the yellow color. Al and Zn enhance the yellow content of an alloy, whereas Sn, Mn, Si and Ni decrease the yellow content. When the alloys with different karat gold colors are imitated, Al and Zn are the most important color mixing elements and Sn, Mn, Si and Ni can be used as auxiliary.
文摘Copper base alloy was overlaid onto 35CrMnSiA steel plate by tungsten inert gas (TIG) welding method. The heat transfer process was simulated, the microstructures of the copper base overlay were analyzed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), and the friction and abrasion properties of the overlay were measured. The results show that the Fe content increases in the overlay with increasing the welding current. And with the increase of Fe content in the overlay, the friction coefficient increases and the wear mechanism changes from oxidation wear to abrasive wear and plough wear, which is related to the size and quantity of Fe grains in the overlay. While with the increase of Fe content in the overlay, the protection of oxidation layer against the oxidation wear on the melted metal decreases.
文摘铜及其合金具有高导电性、高导热性、优良的力学性能和耐腐蚀性能,是应用广泛的工业材料之一,也是全世界众多机构及学者研究的主要对象之一。Web of Science(WoS)Core Collection数据库2023年发表并收录铜及铜合金领域的论文近8000篇,文献计量学分析表明,铜及铜合金研究的传统方向依然受到很大关注,如铜合金的微观组织、物理化学性能、腐蚀性能等,而铜基功能材料更是当前铜合金研究的热点。中国科学院(>300篇论文)、中南大学、俄罗斯科学院、中国科学院大学、沙特王国大学、北京科技大学(>100篇论文)、中国科学技术大学、昆明理工大学、上海交通大学、哈尔滨工业大学等机构在铜合金研究与开发方面做出了显著贡献。本综述结合统计数据对2023年铜及铜合金材料的研究现状进行概述,介绍了铜冶炼和铜材料制备的基本方法,然后从5方面论述了铜材料的应用:1)铜合金结构材料;2)铜基催化材料;3)铜基电子材料;4)铜基再生材料;5)铜基储能材料。最后,对铜及铜合金材料的未来发展方向进行展望,并提出未来研究方向建议。
文摘This work concerns the structural evolution of Cu70Nb20Al10(at%) alloy processed by mechanical alloying using a planetary ball mill in air atmosphere for different times(4 to 200 h). The morphological, structural, microstructural, and thermal behaviors of the alloy were investigated by scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and differential scanning calorimetry. X-ray diffraction patterns were examined using the Rietveld refinement technique with the help of the MAUD software. A disordered FCC-Cu(Nb,Al) solid solution was formed after 8 h of milling. The crystallite size, microstrain, and lattice parameter were determined by the Rietveld method. With increasing milling time, the crystallite size of the final product-ternary-phase FCC-Cu(Nb,Al)-is refined to the nanometer scale, reaching 12 nm after 200 h. This crystallographic structure combines good mechanical strength and good ductility. An increase in microstrain and partial oxidation were also observed with increasing milling time.
文摘Cu-23 at.%Zn-11 at.% Al alloy has been studied by positron annihilation technique. It is shown that the defects in the alloy induced by quenching from the temperature above α-transformation are basically monovacancies, instead of other forms of defects.
文摘The mixture of 90W 7Ni 3Fe(mass fraction, %) powders was milled in a planetary ball mill. Its structure changed during milling, the surface characteristics and thermal stability of the milled powders were studied with X ray diffraction(XRD), Brunaure Emmett Teller (BET) nitrogen adsorption technique and differential thermal analysis(DTA). The results show that high energy ball milling leads to the formation of composite powders with amorphous binder phase and supersaturated W(Ni, Fe) nano crystalline grains in which great lattice distortion exists. The crystallization temperature of the amorphous binder phase during heating decreases with milling time. The specific surface area and the pore size of the powder mixtures decreases with milling time due to agglomeration and welding between particles.
基金Funded by the Ocean Public Science and Technology Research Fund Projects of China(No.201405013-3)the National Natural Science Foundation of China(No.51609133)+1 种基金the China Postdoctoral Science Foundation(No.2017M620153)the Science&Technology Program of Shanghai Maritime University(No.20130448)
文摘Fe-based coatings reinforced by spherical WC particles were produced on the 304 stainless steel by plasma transferred arc(PTA) to enhance the surface wear properties. Three different Fe/WC composite powder mixtures containing 0 wt%, 30 wt%, and 60 wt% of WC were investigated. The microstructure and phase composition of the Fe/WC composite PTA coatings were evaluated systemically by using scanning electron microscope(SEM) and X-ray diffraction(XRD). The wear properties of the three fabricated PTA coatings were investigated on a BRUKER UMT TriboLab. The morphologies of the worn tracks and wear debris were characterized by using SEM and 3 D non-contract profiler. The experimental results reveal that the microhardness on the cross-section and the wear resistance of the fabricated coatings increase dramatically with the increasing adding WC contents. The coating containing 60 wt% of WC possesses excellent wear resistance validated by the lower coefficients of friction(COF), narrower and shallower wear tracks and smaller wear rate. In the pure Fe-based coating, the main wear mechanism is the combination of adhesion and oxidative wear. Adhesive and two-body abrasive wear are predominated in the coating containing 30 wt% of WC, whereas threebody abrasion wear mechanism is predominated in the coating containing 60 wt% of WC.
基金Project(2006259) supported by the Education Science Foundation of Jiangxi Provincial Education DepartmentProject(2007gqc1562) supported by the Natural Science Foundation of Jiangxi Province, China
文摘Nano-crystalline pre-alloyed powders of W-Ni-Fe were fabricated by high energy ball milling mechanical alloying (MA) technique. The change of appearances and the crystallite sizes of powders before and after high energy ball milling were investigated by XRD, TOPAS P software, SEM and EDS. The results show that the nano-crystalline pre-alloyed powders can be fabricated by 5 h high energy ball milling. During the MA process, the diffusion of W, Ni and Fe happens in the process of repeated welding and fracturing. As a result, nano-crystalline supersaturated solid solutions are formed. The crystallite sizes won't be refined after 10 h ball milling. The crystallite sizes of different compositions are almost the same under the same MA condition. Due to the toughening mechanism of rare earth element, the powders of 90W-4Ni-2Fe-3.8Mo-0.2RE alloy are seriously agglomerated after ball milling compared with the other alloys. It can be concluded that the optimal sintering temperature of 90W-4Ni-2Fe-3.8Mo-0.2RE pre-alloyed powders after 15 h mechanical alloying is 1 300-1 350 ℃.