To solve the uneven burden of same-type holes reducing the blasting efficiency due to the limitation of drilling equipment,we need a double-face program-controlled planning method for hole position parameters used on ...To solve the uneven burden of same-type holes reducing the blasting efficiency due to the limitation of drilling equipment,we need a double-face program-controlled planning method for hole position parameters used on a computer-controlled drilling jumbo.The cross-section splits into even and uneven areas.It also considers the uneven burden at the hole’s entrance and bottom.In the uneven area,various qualifying factors are made to optimize the hole spacing and maximize the burden uniformity,combined with the features of the area edges and gridbased segmentation methods.The hole position coordinates and angles in the even area are derived using recursion and iteration algorithms.As a case,this method presents all holes in a 4.8 m wide and 3.6 m high cross-section.Compared with the design produced by the drawing method,our planning in the uneven area improved the standard deviation of the hole burden by 40%.The improved hole layout facilitates the evolution of precise,efficient,and intelligent blasting in underground mines.展开更多
In the past decades, many underwater tunnels have been constructed in the mainland of China, and great progress has been made in related tunneling technologies. This paper presents the history and state of the art of ...In the past decades, many underwater tunnels have been constructed in the mainland of China, and great progress has been made in related tunneling technologies. This paper presents the history and state of the art of underwater tunnels in the mainland of China in terms of shield-bored tunnels, drill-and-blast tunnels, and immersed tunnels. Typical underwater tunnels of these types in the mainland of China are described, along with innovative technologies regarding comprehensive geological prediction, grouting-based consolidation, the design and construction of large cross-sectional tunnels with shallow cover in weak strata, cutting tool replacement under limited drainage and reduced pressure conditions, the detection and treatment of boulders, the construction of underwater tunnels in areas with high seismic intensity, and the treatment of serious sedimentation in a foundation channel of immersed tunnels. Some suggestions are made regarding the three potential great strait-crossing tunnels-the Qiongzhou Strait-Crossing Tunnel, Bohai Strait-Crossing Tunnel, and Taiwan Strait-Crossing Tunnel--and issues related to these great strait-crossing tunnels that need further study are proposed.展开更多
One of the most important factors influencing on a tunnel blast efficiency is the proper design of blasting pattern. Among blasting parameters, blasthole diameter and tunnel face area are more significant so that any ...One of the most important factors influencing on a tunnel blast efficiency is the proper design of blasting pattern. Among blasting parameters, blasthole diameter and tunnel face area are more significant so that any change in these parameters could finally affect on specific charge and specific drilling. There are mainly two groups of methods for tunnel blast design categorized based on the parallel cuts and angular cuts. In this research, a software for tunnel blast design was developed to analyze the effect and sensitiveness of blasthole diameter and the tunnel face area on blasting results in different blast design models. Using the software, it is quickly possible to determine specific charge, specific drilling and number of blastholes for each blast design model. The relations between both of blasthole diameters and the tunnel face area with the above parameters in different blast design models were then investigated to yield a set of equations with the highest correlations to compare the methods. The results showed that angular method requires more blasthole numbers than parallel method in similar condition(blasthole diameter and tunnel face area). Moreover, the specific charge values yielded by the two methods are approximately the same and very close together.展开更多
Numerical analysis of the total energy release of surrounding rocks excavated by drill-and-blast (D&B) method and tunnel boring machine (TBM) method is presented in the paper. The stability of deep tunnels during...Numerical analysis of the total energy release of surrounding rocks excavated by drill-and-blast (D&B) method and tunnel boring machine (TBM) method is presented in the paper. The stability of deep tunnels during excavation in terms of energy release is also discussed. The simulation results reveal that energy release during blasting excavation is a dynamic process. An intense dynamic effect is captured at large excavation footage. The magnitude of energy release during full-face excavation with D&B method is higher than that with TBM method under the same conditions. The energy release rate (ERR) and speed (ERS) also have similar trends. Therefore, the rockbursts in tunnels excavated by D&B method are frequently encountered and more intensive than those by TBM method. Since the space after tunnel face is occupied by the backup system of TBM, prevention and control of rockbursts are more difficult. Thus, rockbursts in tunnels excavated by TBM method with the same intensity are more harmful than those in tunnels by D&B method. Reducing tunneling rate of TBM seems to be a good means to decrease ERR and risk of rockburst. The rockbursts observed during excavation of headrace tunnels at Jinping II hydropower station in West China confirm the analytical results obtained in this paper.展开更多
During tunneling in loose grounds, the ground deformation caused by drillings around the tunnel, leads to land subsidence and the adjacent tunnel which would affect tunnel structure and surrounding structures. In such...During tunneling in loose grounds, the ground deformation caused by drillings around the tunnel, leads to land subsidence and the adjacent tunnel which would affect tunnel structure and surrounding structures. In such situations it is necessary to improve the properties of the ground prior to drilling operations. In order to acquire tunnel face stability during excavation operations in areas with loose soil fault or areas with lack of adhesion, there are various methods such as split cross drilling, frame holder or auxiliary pre-holding methods such as umbrella arch method;pre-holding methods must provide safety when drilling and must be affordable, economically. In this study, we assessed the previous studies on methods and behaviors of umbrella arch strategy in reinforcing the concrete tunnels, reached the purpose with experimental and numerical methods and offered the latest design achievements, implementation progresses and analysis in relation with this method.展开更多
Classification of surrounding rock is the cornerstone of tunnel design and construction.The traditional methods are mainly qualitative and manual and require extensive professional knowledge and engineering experience...Classification of surrounding rock is the cornerstone of tunnel design and construction.The traditional methods are mainly qualitative and manual and require extensive professional knowledge and engineering experience.To minimize the effect of the empirical judgment on the accuracy of surrounding rock classification,it is necessary to reduce human participation.An intelligent classification technique based on information technology and artificial intelligence could overcome these issues.In this regard,using 299 groups of drilling parameters collected automatically using intelligent drill jumbos in tunnels for the Zhengzhou-Wanzhou high-speed railway in China,an intelligent-classification surrounding-rock database is constructed in this study.Based on a machine learning algorithm,an intelligent classification model is then developed,which has an overall accuracy of 91.9%.Finally,using the core of the model,the intelligent classification system for the surrounding rock of drilled and blasted tunnels is integrated,and the system is carried by intelligent jumbos to perform automatic recording and transmission of drilling parameters and intelligent classification of the surrounding rock.This approach provides a foundation for the dynamic design and construction(both conventional and intelligent)of tunnels.展开更多
The long and large diameter uncharged hole boring(LLB)method is a cut blasting method that minimizes blast-induced vibrations by creating long and large diameter uncharged holes at the excavation face of tunnels prior...The long and large diameter uncharged hole boring(LLB)method is a cut blasting method that minimizes blast-induced vibrations by creating long and large diameter uncharged holes at the excavation face of tunnels prior to tunnel excavation.Drilling in this method typically uses a 50 m long with a 382 mm diameter hammer bit in the horizontal direction at the tunnel face.However,the significant weight and uni-directional rotation of the rod head,as well as variables such as geological characteristics,machine conditions,and inexperienced operators result in significant deviation from the target borehole alignment that hinders the vibration-dampening effect of the uncharged holes.Furthermore,since there is no method to verify the alignment of the boreholes until main tunnel construction,borehole misalignment is often not discovered until weeks after construction,which requires tunnel construction to cease until the equipment can be remobilized and an additional borehole be created,causing significant delays and increased costs for the entire tunnel project.In this study,the borehole alignment tracking and ground exploration system(BGS)is developed to predict and monitor the quality and alignment of boreholes for cut blasting methods such as the LLB methods immediately after boring.The BGS was subsequently tested at a subway construction site to evaluate its performance in the field.The measurements yielded by the BGS were compared with manually measured boring positions at every 5 m along the borehole.Although the BGS showed a maximum deviation of approximately 12%at a local point where the hole surface was relatively rough,the accuracy for the final boring position was approximately 97%,demonstrating excellent precision of the alignment tracking system.The BGS demonstrates excellent performance in predicting ground conditions and the boring quality of a cut hole immediately after drilling,and shows promise in various other applications for monitoring borehole alignment.展开更多
基金financially supported by the Fundamental Research Funds for the Central Universities(No.FRF-AT-19-005)the National Natural Science Foundation of China(No.51934001).
文摘To solve the uneven burden of same-type holes reducing the blasting efficiency due to the limitation of drilling equipment,we need a double-face program-controlled planning method for hole position parameters used on a computer-controlled drilling jumbo.The cross-section splits into even and uneven areas.It also considers the uneven burden at the hole’s entrance and bottom.In the uneven area,various qualifying factors are made to optimize the hole spacing and maximize the burden uniformity,combined with the features of the area edges and gridbased segmentation methods.The hole position coordinates and angles in the even area are derived using recursion and iteration algorithms.As a case,this method presents all holes in a 4.8 m wide and 3.6 m high cross-section.Compared with the design produced by the drawing method,our planning in the uneven area improved the standard deviation of the hole burden by 40%.The improved hole layout facilitates the evolution of precise,efficient,and intelligent blasting in underground mines.
文摘In the past decades, many underwater tunnels have been constructed in the mainland of China, and great progress has been made in related tunneling technologies. This paper presents the history and state of the art of underwater tunnels in the mainland of China in terms of shield-bored tunnels, drill-and-blast tunnels, and immersed tunnels. Typical underwater tunnels of these types in the mainland of China are described, along with innovative technologies regarding comprehensive geological prediction, grouting-based consolidation, the design and construction of large cross-sectional tunnels with shallow cover in weak strata, cutting tool replacement under limited drainage and reduced pressure conditions, the detection and treatment of boulders, the construction of underwater tunnels in areas with high seismic intensity, and the treatment of serious sedimentation in a foundation channel of immersed tunnels. Some suggestions are made regarding the three potential great strait-crossing tunnels-the Qiongzhou Strait-Crossing Tunnel, Bohai Strait-Crossing Tunnel, and Taiwan Strait-Crossing Tunnel--and issues related to these great strait-crossing tunnels that need further study are proposed.
文摘One of the most important factors influencing on a tunnel blast efficiency is the proper design of blasting pattern. Among blasting parameters, blasthole diameter and tunnel face area are more significant so that any change in these parameters could finally affect on specific charge and specific drilling. There are mainly two groups of methods for tunnel blast design categorized based on the parallel cuts and angular cuts. In this research, a software for tunnel blast design was developed to analyze the effect and sensitiveness of blasthole diameter and the tunnel face area on blasting results in different blast design models. Using the software, it is quickly possible to determine specific charge, specific drilling and number of blastholes for each blast design model. The relations between both of blasthole diameters and the tunnel face area with the above parameters in different blast design models were then investigated to yield a set of equations with the highest correlations to compare the methods. The results showed that angular method requires more blasthole numbers than parallel method in similar condition(blasthole diameter and tunnel face area). Moreover, the specific charge values yielded by the two methods are approximately the same and very close together.
基金Supported by the National Key Basic Research and Development Program of China (2010CB732003)the National Natural Science Foundation of China (51009013,50909077)
文摘Numerical analysis of the total energy release of surrounding rocks excavated by drill-and-blast (D&B) method and tunnel boring machine (TBM) method is presented in the paper. The stability of deep tunnels during excavation in terms of energy release is also discussed. The simulation results reveal that energy release during blasting excavation is a dynamic process. An intense dynamic effect is captured at large excavation footage. The magnitude of energy release during full-face excavation with D&B method is higher than that with TBM method under the same conditions. The energy release rate (ERR) and speed (ERS) also have similar trends. Therefore, the rockbursts in tunnels excavated by D&B method are frequently encountered and more intensive than those by TBM method. Since the space after tunnel face is occupied by the backup system of TBM, prevention and control of rockbursts are more difficult. Thus, rockbursts in tunnels excavated by TBM method with the same intensity are more harmful than those in tunnels by D&B method. Reducing tunneling rate of TBM seems to be a good means to decrease ERR and risk of rockburst. The rockbursts observed during excavation of headrace tunnels at Jinping II hydropower station in West China confirm the analytical results obtained in this paper.
文摘During tunneling in loose grounds, the ground deformation caused by drillings around the tunnel, leads to land subsidence and the adjacent tunnel which would affect tunnel structure and surrounding structures. In such situations it is necessary to improve the properties of the ground prior to drilling operations. In order to acquire tunnel face stability during excavation operations in areas with loose soil fault or areas with lack of adhesion, there are various methods such as split cross drilling, frame holder or auxiliary pre-holding methods such as umbrella arch method;pre-holding methods must provide safety when drilling and must be affordable, economically. In this study, we assessed the previous studies on methods and behaviors of umbrella arch strategy in reinforcing the concrete tunnels, reached the purpose with experimental and numerical methods and offered the latest design achievements, implementation progresses and analysis in relation with this method.
基金supported by the National Natural Science Foundation of China(NSFC)[Grant Nos.51578458,and 51878568]the China Railway Corporation Science and Technology Research and Development Program[Grant Nos.2017G007-H,2017G007-F,P2018G007,K2018G014,and K2018G014-01].
文摘Classification of surrounding rock is the cornerstone of tunnel design and construction.The traditional methods are mainly qualitative and manual and require extensive professional knowledge and engineering experience.To minimize the effect of the empirical judgment on the accuracy of surrounding rock classification,it is necessary to reduce human participation.An intelligent classification technique based on information technology and artificial intelligence could overcome these issues.In this regard,using 299 groups of drilling parameters collected automatically using intelligent drill jumbos in tunnels for the Zhengzhou-Wanzhou high-speed railway in China,an intelligent-classification surrounding-rock database is constructed in this study.Based on a machine learning algorithm,an intelligent classification model is then developed,which has an overall accuracy of 91.9%.Finally,using the core of the model,the intelligent classification system for the surrounding rock of drilled and blasted tunnels is integrated,and the system is carried by intelligent jumbos to perform automatic recording and transmission of drilling parameters and intelligent classification of the surrounding rock.This approach provides a foundation for the dynamic design and construction(both conventional and intelligent)of tunnels.
基金supported by the Korea Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure,and Transport,South Korea(Grant No.22UUTI-C157786-03).
文摘The long and large diameter uncharged hole boring(LLB)method is a cut blasting method that minimizes blast-induced vibrations by creating long and large diameter uncharged holes at the excavation face of tunnels prior to tunnel excavation.Drilling in this method typically uses a 50 m long with a 382 mm diameter hammer bit in the horizontal direction at the tunnel face.However,the significant weight and uni-directional rotation of the rod head,as well as variables such as geological characteristics,machine conditions,and inexperienced operators result in significant deviation from the target borehole alignment that hinders the vibration-dampening effect of the uncharged holes.Furthermore,since there is no method to verify the alignment of the boreholes until main tunnel construction,borehole misalignment is often not discovered until weeks after construction,which requires tunnel construction to cease until the equipment can be remobilized and an additional borehole be created,causing significant delays and increased costs for the entire tunnel project.In this study,the borehole alignment tracking and ground exploration system(BGS)is developed to predict and monitor the quality and alignment of boreholes for cut blasting methods such as the LLB methods immediately after boring.The BGS was subsequently tested at a subway construction site to evaluate its performance in the field.The measurements yielded by the BGS were compared with manually measured boring positions at every 5 m along the borehole.Although the BGS showed a maximum deviation of approximately 12%at a local point where the hole surface was relatively rough,the accuracy for the final boring position was approximately 97%,demonstrating excellent precision of the alignment tracking system.The BGS demonstrates excellent performance in predicting ground conditions and the boring quality of a cut hole immediately after drilling,and shows promise in various other applications for monitoring borehole alignment.