期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Pressure Regulation for Earth Pressure Balance Control on Shield Tunneling Machine by Using Adaptive Robust Control 被引量:8
1
作者 XIE Haibo LIU Zhibin YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期598-606,共9页
Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control o... Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control of the machine. Yet, few works concern about the hydraulic components, especially the pressure and flow rate regulation components. This research focuses on pressure control strategies by using proportional pressure relief valve, which is widely applied on typical shield tunneling machines. Modeling of a commercial pressure relief valve is done. The modeling centers on the main valve, because the dynamic performance is determined by the main valve. To validate such modeling, a frequency-experiment result of the pressure relief valve, whose bandwidth is about 3 Hz, is presented as comparison. The modeling and the frequency experimental result show that it is reasonable to regard the pressure relief valve as a second-order system with two low corner frequencies. PID control, dead band compensation control and adaptive robust control(ARC) are proposed and simulation results are presented. For the ARC, implements by using first order approximation and second order approximation are presented. The simulation results show that the second order approximation implement with ARC can track 4 Hz sine signal very well, and the two ARC simulation errors are within 0.2 MPa. Finally, experiment results of dead band compensation control and adaptive robust control are given. The results show that dead band compensation had about 30° phase lag and about 20% off of the amplitude attenuation. ARC is tracking with little phase lag and almost no amplitude attenuation. In this research, ARC has been tested on a pressure relief valve. It is able to improve the valve's dynamic performances greatly, and it is capable of the pressure control of shield machine excavation. 展开更多
关键词 shield tunneling machine pressure regulation adaptive robust control
下载PDF
Protection against water or mud inrush in tunnels by grouting:A review 被引量:34
2
作者 Shucai Li Rentai Liu +1 位作者 Qingsong Zhang Xiao Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第5期753-766,共14页
Grouting is a major method used to prevent water and mud inrush in tunnels and underground engineering. In this paper, the current situation of control and prevention of water and mud inrush is summarized and recent a... Grouting is a major method used to prevent water and mud inrush in tunnels and underground engineering. In this paper, the current situation of control and prevention of water and mud inrush is summarized and recent advances in relevant theories, grout/equipment, and critical techniques are introduced. The time-variant equations of grout viscosity at different volumetric ratios were obtained based on the constitutive relation of typical fast curing grouts. A large-scale dynamic grouting model testing system (4000 mm × 2000 mm × 5 mm) was developed, and the diffusions of cement and fast curing grouts in dynamic water grouting were investigated. The results reveal that the diffusions of cement grouts and fast curing grouts are U-shaped and asymmetric elliptical, respectively. A multi-parameter real-time monitoring system (&#981; = 1.5 m, h = 1.2 m) was developed for the grouting process to study the diffusion and reinforcement mechanism of grouting in water-rich faulted zone. A high early strength cream-type reinforcing/plugging grout, a high permeability nano-scale silica gel grout, and a high-expansion filling grout were proposed for the control of water hazards in weak water-rich faulted zone rocks, water inrush in karst passages, and micro-crack water inrush, respectively. Complement technologies and equipment for industrial applications were also proposed. Additionally, a novel full-life periodic dynamic water grouting with the critical grouting borehole as the core was proposed. The key techniques for the control of water inrush in water-rich faulted zone, jointed fissures and karst passages, and micro-crack water inrush were developed. 展开更多
关键词 tunnel engineering Water or mud inrushModel testsGrouting theoryGrouting control techniques
下载PDF
Smoke movement in a tunnel of a running metro train on fire 被引量:3
3
作者 周丹 田红旗 +1 位作者 郑晋丽 颜鑫 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期208-213,共6页
Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusi... Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusion inside the tunnel when the bottom of a metro train was on fire and to compare the effect of longitudinal ventilation modes on the smoke motion when the burning train stopped. Research results show that the slipstream curves around the train obtained by numerical simulation are consistent with experimental data. When the train decelerates, the smoke flow first extends to the tail of the train. With the decrease of the train's speed, the smoke flow diffuses to the head of the train. After the train stops, the slipstream around the train formed in the process of train operation plays a leading role in the smoke diffusion in the tunnel. The smoke flow quickly diffuses to the domain in front of the train. After forward mechanical ventilation is provided, the smoke flow inside the tunnel continues to diffuse downstream. When reverse mechanical ventilation operates, the smoke in front of the train flows back rapidly and diffuses to the rear of the train. 展开更多
关键词 subway tunnel train catching fire moving fire source smoke movement ventilation control
下载PDF
Active flutter suppression of a multiple-actuated-wing wind tunnel model 被引量:5
4
作者 Qian Wenmin Huang Rui +1 位作者 Hu Haiyan Zhao Yonghui 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1451-1460,共10页
In this study, a multi-input/multi-output(MIMO) time-delay feedback controller is designed to actively suppress the flutter instability of a multiple-actuated-wing(MAW) wind tunnel model in the low subsonic flow r... In this study, a multi-input/multi-output(MIMO) time-delay feedback controller is designed to actively suppress the flutter instability of a multiple-actuated-wing(MAW) wind tunnel model in the low subsonic flow regime. The unsteady aerodynamic forces of the MAW model are computed based on the doublet-lattice method(DLM). As the first attempt, the conventional linear quadratic-Gaussian(LQG) controller is designed to actively suppress the flutter of the MAW model. However, because of the time delay in the control loop, the wind tunnel tests illustrate that the LQG-controlled MAW model has no guaranteed stability margins. To compensate the time delay, hence, a time-delay filter, approximated via the first-order Pade approximation, is added to the LQG controller. Based on the time-delay feedback controller, a new digital control system is constructed by using a fixed-point and embedded digital signal processor(DSP) of high performance. Then, a number of wind tunnel tests are implemented based on the digital control system.The experimental results show that the present time-delay feedback controller can expand the flutter boundary of the MAW model and suppress the flutter instability of the open-loop aeroelastic system effectively. 展开更多
关键词 Aeroservoelasticity Flutter Linear quadratic Gaussian(LQG) controller Multiple-actuated-wing(MAW) Time-delay feedback Wind tunnel test
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部