Based on the similarity theory, taking the horseshoe, city-gate and round linings as examples, the value and distribution regularities of normal frost heaving pressures (hereinafter as frost heaving pressures) in tu...Based on the similarity theory, taking the horseshoe, city-gate and round linings as examples, the value and distribution regularities of normal frost heaving pressures (hereinafter as frost heaving pressures) in tunnels excavated in fractured rock mass in cold regions under different constraints and freezing depths were studied by a test model. It was found that the larger the frozen depth, the larger the frost heaving pressure, and the stronger the top constraint, the larger the frost heaving pressure. For the horseshoe lining and city-gate lining, the top constraint has a greater effect on the frost heaving pressures on the arch and the inverted arch. For the round lining, the influences of the top constraint on the frost heaving pressure in all linings are almost the same. The frost heaving pressure is maximum on the city-gate lining and minimal on the round lining. The largest frost heaving pressure all occur near the foot of the inverted arch for the three kinds of lining. Thus, the test data basically coincide with the observed in situ data.展开更多
For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely t...For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely to occur in the final process during the formation of shear bands, breakouts or V-shaped notches close to the excavation boundaries. However, the perfectly elastoplastic, strain-softening and elasto-brittle-plastic models cannot reasonably describe the brittle failure of hard rock tunnels under high in-situ stress conditions. These approaches often underestimate the depth of failure and overestimate the lateral extent of failure near the excavation. Based on a practical case of the mine-by test tunnel at an underground research laboratory (URL) in Canada, the influence of rock mass dilation on the depth and extent of failure and deformation is investigated using a calibrated cohesion weakening and frictional strengthening (CWFS) model. It can be found that, when modeling brittle failure of rock masses, the calibrated CWFS model with a constant dilation angle can capture the depth and extent of stress-induced brittle failure in hard rocks at a low confinement if the stress path is correctly represented, as demonstrated by the failure shape observed in the tunnel. However, using a constant dilation angle cannot simulate the nonlinear deformation behavior near the excavation boundary accurately because the dependence of rock mass dilation on confinement and plastic shear strain is not considered. It is illustrated from the numerical simulations that the proposed plastic shear strain and confinement-dependent dilation angle model in combination with the calibrated CWFS model implemented in FLAC can reasonably reveal both rock mass failure and displacement distribution in vicinity of the excavation simultaneously. The simulation results are in good agreement with the field observations and displacement measurement data.展开更多
Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale m...Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale model test of sand-flow method. The real-time data of sand-deposit height and radius were obtained by the self-developed sand-deposit detectors. The test results show that the detecting method is simple and has high precision. In the use of sand-flow method, the sand-carrying capability of fluid is limited, and sand particles are all transported to the sand-deposit periphery through crater, gap and chutes after the sand deposit formed. The diffusion range of the particles outside the sand-deposit does not exceed 2.0 m. Severe sorting of sand particles is not observed because of the unique oblique-layered depositing process. The temporal and spatial distributions of gap and chutes directly affect the sand-deposit expansion, and the expansion trend of the average sand-deposit radius accords with quadratic time-history curve.展开更多
The section of shield tunnel of the Chengdu Metro line passes primarily through sandy cobble strata. There are many buildings with spread foundations along the lines. Shield tunnel construction will disturb the ground...The section of shield tunnel of the Chengdu Metro line passes primarily through sandy cobble strata. There are many buildings with spread foundations along the lines. Shield tunnel construction will disturb the ground, causing displacement or stress to adjacent spread foundations. Based on the similarity theory, a laboratory model test of shield tunnel driving was carried out to study the influence of shield tunnel excavation on the displace ment of adjacent spread foundation. The results show that foundation closer to the tunnel has greater displacement or settlement than that further away. The horizontal dis placement is small and is influenced greatly by the cutting face. The displacement along the machine driving direction is bigger and is significantly affected by the thrust force. Settlement occurs primarily when shield machine passes close to the foundation and is the greatest at that time. Uneven settlement at the bottom of the spread foundation reaches a maximum after the excavation ends. In a numerical simulation, a particle flow model was con structed to study the impact of shield tunnel excavation on the stresses in the ground. The model showed stress con centration at the bottom of the spread foundation. With the increasing ground loss ratio, a loose area appears in the tunnel dome where the contact force dropped. Above the loose area, the contact force increases, forming an arch shaped soil area which prevents the loose area from expanding to the ground surface. The excavation also changed the pressure distribution around spread foundation.展开更多
文摘Based on the similarity theory, taking the horseshoe, city-gate and round linings as examples, the value and distribution regularities of normal frost heaving pressures (hereinafter as frost heaving pressures) in tunnels excavated in fractured rock mass in cold regions under different constraints and freezing depths were studied by a test model. It was found that the larger the frozen depth, the larger the frost heaving pressure, and the stronger the top constraint, the larger the frost heaving pressure. For the horseshoe lining and city-gate lining, the top constraint has a greater effect on the frost heaving pressures on the arch and the inverted arch. For the round lining, the influences of the top constraint on the frost heaving pressure in all linings are almost the same. The frost heaving pressure is maximum on the city-gate lining and minimal on the round lining. The largest frost heaving pressure all occur near the foot of the inverted arch for the three kinds of lining. Thus, the test data basically coincide with the observed in situ data.
基金supported by China Scholarship Council and GRC/MIRARCO-Mining Innovation of Laurentian University, Canada
文摘For the compressive stress-induced failure of tunnels at depth, rock fracturing process is often closely associated with the generation of surface parallel fractures in the initial stage, and shear failure is likely to occur in the final process during the formation of shear bands, breakouts or V-shaped notches close to the excavation boundaries. However, the perfectly elastoplastic, strain-softening and elasto-brittle-plastic models cannot reasonably describe the brittle failure of hard rock tunnels under high in-situ stress conditions. These approaches often underestimate the depth of failure and overestimate the lateral extent of failure near the excavation. Based on a practical case of the mine-by test tunnel at an underground research laboratory (URL) in Canada, the influence of rock mass dilation on the depth and extent of failure and deformation is investigated using a calibrated cohesion weakening and frictional strengthening (CWFS) model. It can be found that, when modeling brittle failure of rock masses, the calibrated CWFS model with a constant dilation angle can capture the depth and extent of stress-induced brittle failure in hard rocks at a low confinement if the stress path is correctly represented, as demonstrated by the failure shape observed in the tunnel. However, using a constant dilation angle cannot simulate the nonlinear deformation behavior near the excavation boundary accurately because the dependence of rock mass dilation on confinement and plastic shear strain is not considered. It is illustrated from the numerical simulations that the proposed plastic shear strain and confinement-dependent dilation angle model in combination with the calibrated CWFS model implemented in FLAC can reasonably reveal both rock mass failure and displacement distribution in vicinity of the excavation simultaneously. The simulation results are in good agreement with the field observations and displacement measurement data.
基金Project(51108190) supported by the National Natural Science Foundation of ChinaProject(2012ZC27) supported by the Independence Research Subject from State Key Laboratory of Subtropical Building Science,ChinaProject(GTCC 2008-253) supported by the Research Subject from Guangzhou City,China
文摘Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale model test of sand-flow method. The real-time data of sand-deposit height and radius were obtained by the self-developed sand-deposit detectors. The test results show that the detecting method is simple and has high precision. In the use of sand-flow method, the sand-carrying capability of fluid is limited, and sand particles are all transported to the sand-deposit periphery through crater, gap and chutes after the sand deposit formed. The diffusion range of the particles outside the sand-deposit does not exceed 2.0 m. Severe sorting of sand particles is not observed because of the unique oblique-layered depositing process. The temporal and spatial distributions of gap and chutes directly affect the sand-deposit expansion, and the expansion trend of the average sand-deposit radius accords with quadratic time-history curve.
基金funded by the National Natural Science Foundation of China (Nos. 51278422 and 50925830)the National 973 Plan Topics of China (No. 2010CB732105)+1 种基金the National Science and Technology Pillar Program of China (No. 2012BAG05B03)the Sichuan Youth Science and Technology Foundation, China (No. 2012JQ0021)
文摘The section of shield tunnel of the Chengdu Metro line passes primarily through sandy cobble strata. There are many buildings with spread foundations along the lines. Shield tunnel construction will disturb the ground, causing displacement or stress to adjacent spread foundations. Based on the similarity theory, a laboratory model test of shield tunnel driving was carried out to study the influence of shield tunnel excavation on the displace ment of adjacent spread foundation. The results show that foundation closer to the tunnel has greater displacement or settlement than that further away. The horizontal dis placement is small and is influenced greatly by the cutting face. The displacement along the machine driving direction is bigger and is significantly affected by the thrust force. Settlement occurs primarily when shield machine passes close to the foundation and is the greatest at that time. Uneven settlement at the bottom of the spread foundation reaches a maximum after the excavation ends. In a numerical simulation, a particle flow model was con structed to study the impact of shield tunnel excavation on the stresses in the ground. The model showed stress con centration at the bottom of the spread foundation. With the increasing ground loss ratio, a loose area appears in the tunnel dome where the contact force dropped. Above the loose area, the contact force increases, forming an arch shaped soil area which prevents the loose area from expanding to the ground surface. The excavation also changed the pressure distribution around spread foundation.